链接:http://poj.org/problem?id=2154

题意:给出两个整数 N 和 P,表示 N 个珠子,N种颜色,要求不同的项链数, 结果 %p ~

思路: 利用polya定理解~定理内容:

是n个对象的一个置换群, 用m种颜色染图这n个对象,则不同的染色方案数为:

其中

的循环节数~
 
 

本题只有旋转一种置换方式,那么共有 N 个置换, 每个置换的循环节为 gcd(N,i)~

那么结果为∑(N^(gcd(N, i))) %P。  N为 1e9, 不能枚举 i , 但我们可以统计 gcd(N,i)==a 的有多少个~

令L==N/a, i==a*t,  即 a==gcd(N, i)==gcd(L*a, t*a), 此时只要满足 gcd(L, t)==1即可. 而1<=i<=N 即 1<=t<=N/a==L~

所以t的个数为 L 的欧拉函数,  所以 结果为:∑(Euler(L)*(n^(N/L)))%p ,为了避免最后做除法结果可化为∑(Euler(L)*(n^(N/L-1)))%p。

 #include <iostream>
#include <cstdio>
using namespace std;
const int MN = 5e4;
typedef long long LL;
int a[MN],p[MN], T, N, M, k;
LL P_M( int a, int b )
{
LL res=, t=(LL)a%M;
while(b){
if(b&)res=(res*t)%M;
t=(t*t)%M;
b>>=;
}
return res;
}
void getp( )
{
for( int i=; i*i<=MN; i+= ){
if(!a[i])
for( int j=i+i; j<=MN; j+=i )
a[j]=;
}
p[]=, k=;
for( int i=; i<MN ; i+= )
if(!a[i]) p[k++]=i;
}
int Euler( int x)
{
int res=x;
for( int i=; i<k&&p[i]*p[i]<=x; ++ i ){
if(x%p[i]==){
res=res/p[i]*(p[i]-);
while(x%p[i]==){ x=x/p[i];
}
}
}
if(x>)
res=res/x*(x-);
return res;
}
int main( )
{
getp();
scanf("%d", &T);
while(T--){
scanf("%d%d", &N, &M);
int i;
LL ans=;
for( i=; i*i<N; ++ i ){ if(N%i==){
ans+=(LL)Euler(i)%M*P_M(N, N/i-);
ans%=M;
ans+=(LL)Euler(N/i)%M*P_M(N, i-);
ans%=M;
} }
if(i*i==N){
ans+=(LL)Euler(i)%M*P_M(N, i-);
ans%=M;
}
printf("%lld\n", ans);
}
return ;
}
 

poj 2154 Color < 组合数学+数论>的更多相关文章

  1. POJ 2154 Color [Polya 数论]

    和上题一样,只考虑旋转等价,只不过颜色和珠子$1e9$ 一样的式子 $\sum\limits_{i=1}^n m^{gcd(i,n)}$ 然后按$gcd$分类,枚举$n$的约数 如果这个也化不出来我莫 ...

  2. 组合数学 - 波利亚定理 --- poj : 2154 Color

    Color Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7873   Accepted: 2565 Description ...

  3. poj 2154 Color——带优化的置换

    题目:http://poj.org/problem?id=2154 置换的第二道题! 需要优化!式子是ans=∑n^gcd(i,n)/n (i∈1~n),可以枚举gcd=g,则有phi( n/g )个 ...

  4. [ACM] POJ 2154 Color (Polya计数优化,欧拉函数)

    Color Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7630   Accepted: 2507 Description ...

  5. poj 2154 Color(polya计数 + 欧拉函数优化)

    http://poj.org/problem?id=2154 大致题意:由n个珠子,n种颜色,组成一个项链.要求不同的项链数目.旋转后一样的属于同一种.结果模p. n个珠子应该有n种旋转置换.每种置换 ...

  6. poj 2154 Color

    这是道标准的数论优化的polya题.卡时卡的很紧,需要用int才能过.程序中一定要注意控制不爆int!!!我因为爆intWA了好久=_=…… 题目简洁明了,就是求 sigma n^gcd(i,n):但 ...

  7. POJ 2154 color (polya + 欧拉优化)

    Beads of N colors are connected together into a circular necklace of N beads (N<=1000000000). You ...

  8. POJ 2154 Color ——Burnside引理

    [题目分析] 数据范围有些大. 然后遍求欧拉函数,遍求和就好了,注意取模. [代码] #include <cstdio> #include <cstring> #include ...

  9. poj 2154 Color 欧拉函数优化的ploya计数

    枚举位移肯定超时,对于一个位移i.我们须要的是它的循环个数,也就是gcd(i,n),gcd(i,n)个数肯定不会非常多,由于等价于n的约数的个数. 所以我们枚举n的约数.对于一个约数k,也就是循环个数 ...

随机推荐

  1. MIPS中的异常处理和系统调用【转】

    转自:http://blog.csdn.net/jasonchen_gbd/article/details/44044091 权声明:本文为博主原创文章,转载请附上原博链接. 异常入口 系统调用是用户 ...

  2. 10深入理解C指针之---指针运算和比较

    该系列文章源于<深入理解C指针>的阅读与理解,由于本人的见识和知识的欠缺可能有误,还望大家批评指教. 指针运算有很多种,主要有指针的声明*.指针的解引*.指针指向(*).或->.指针 ...

  3. 正确使用‘trap指令’实现Docker优雅退出

    一般应用(比如mariadb)都会有一个退出命令,用户使用类似systemctl stop ****.service方法,停止其服务时,systemd会调用其配置文件注册的退出命令,该命令执行清理资源 ...

  4. 数据结构自己实现——queue

    SeqQueue.h #define QueueSize 100 typedef char DataType; class SeqQueue { public: DataType data[Queue ...

  5. js-数字渐增到指定的数字,在指定的时间内完成(有动画效果哦)插件jquery.animateNumber.js

    本来在项目中我自己实现的效果是数字由0渐增到指定的数字就好. 但是,最终效果不理想! Why? 最终指定的数字太大了,TMMD,滚动好久就不到,那用户想看自己有多少钱了,那不是就一直等着!!!所以这个 ...

  6. 第4章 CentOS软件安装

    一.安装JDK 1.1 卸载旧版JDK 首先,在你的服务器上运行一下更新. yum update 然后,在您的系统上搜索,任何版本的已安装的JDK组件. rpm -qa | grep -E '^ope ...

  7. atom 隐藏右边的白线

    atom-text-editor.editor .wrap-guide {//隐藏右边的白线visibility: hidden;}

  8. 数字类型(NSInteger,NSUInteger,NSNumber)

    在Objective-C中,我们可以使用c中的数字数据类型,int.float.long等.它们都是基本数据类型,而不是对象.也就是说,不能够向它们发送消息.然后,有些时候需要将这些值作为对象使用. ...

  9. 【sublime text 3】sublime text 3 汉化

    快捷键:Ctrl+Alt+P 输入快捷键Ctrl+Shift+P 在出现的文本框中输入Install Package(或直接输入“ip”)选中packageControl:Install Packag ...

  10. boost exception jam0.exe 异常错误

    在Windows 8 64 bit下执行boost_1_53_0的bootstrap.bat出现了jam0.exe执行错误 搜索网页发现需要修改两处文件: tools/build/v2/engine/ ...