题目链接:https://vjudge.net/problem/UVA-10518

题解:

问:求斐波那契数f[n]的时候调用了多少次f[n] = f[n-1] + f[n-2],没有记忆化,一直递归到f[0]、f[1],其中f[0]、f[1]也算调用了一次。

设求f[n]调用了S[n]次,则可知: S[n] = S[n-1] + S[n-2] + 1。构造矩阵求解即可。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
//const int MOD = 1e9+7;
const int MAXN = 1e6+; int MOD;
const int Size = ;
struct MA
{
LL mat[Size][Size];
void init()
{
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
mat[i][j] = (i==j);
}
}; MA mul(MA x, MA y)
{
MA ret;
memset(ret.mat, , sizeof(ret.mat));
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
for(int k = ; k<Size; k++)
ret.mat[i][j] += 1LL*x.mat[i][k]*y.mat[k][j]%MOD, ret.mat[i][j] %= MOD;;
return ret;
} MA qpow(MA x, LL y)
{
MA s;
s.init();
while(y)
{
if(y&) s = mul(s, x);
x = mul(x, x);
y >>= ;
}
return s;
} MA tmp ={
, , ,
, , ,
, ,
}; int main()
{
LL n, b, f[] = {,}, kase = ;
while(scanf("%lld%lld",&n,&b)&&(n||b))
{
MOD = b;
if(n<=)
{
printf("Case %lld: %lld %lld %lld\n", ++kase, n, b, f[n]%MOD);
continue;
} MA s = tmp;
s = qpow(s, n-);
LL ans = ((s.mat[][]+s.mat[][])%MOD+s.mat[][])%MOD;
printf("Case %lld: %lld %lld %lld\n", ++kase, n, b, ans);
}
}

UVA10518 How Many Calls? —— 矩阵快速幂的更多相关文章

  1. uva 10518 - How Many Calls?(矩阵快速幂)

    题目链接:uva 10518 - How Many Calls? 公式f(n) = 2 * F(n) - 1, F(n)用矩阵快速幂求. #include <stdio.h> #inclu ...

  2. 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)

    题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...

  3. 51nod 算法马拉松18 B 非010串 矩阵快速幂

    非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...

  4. 51nod 1113 矩阵快速幂

    题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...

  5. 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】

    还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...

  6. HDU5950(矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2 ...

  7. 51nod 1126 矩阵快速幂 水

    有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...

  8. hdu2604(递推,矩阵快速幂)

    题目链接:hdu2604 这题重要的递推公式,找到公式就很easy了(这道题和hdu1757(题解)类似,只是这道题需要自己推公式) 可以直接找规律,推出递推公式,也有另一种找递推公式的方法:(PS: ...

  9. 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式

    矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d     ...

随机推荐

  1. SpringMVC (<context:include-filter>和<context:exclude-filter>的使用)

    eg: 1.现在给定一个项目包的结构: com.yk.controller com.yk.service 2.在SpringMVC.XML有以下的配置: <!--扫描@controller注解- ...

  2. 济南day3

    连续几天都有点炸 预计的分拿不到,调整好心态,考试的时候多想一下,think twice,code once 唉,什么情况啊 题解链接 0+0+0 T1读错题输出反了 n*m%2判断是否==1 T2 ...

  3. CF997D

    分析: 假设在第一个树上我们有一个长度为x的环,在第二树上我们有一个长度为y的环,那么可以在叉积树上构造出$\binom{x+y}{x}$个长度为x+y的环 问题的关键就变成了如何统计出在一个树上的长 ...

  4. PropertyPlaceholderConfigurer 基本用法

    目录 一.PropertyPlaceholderConfigurer 的继承体系 二.PropertyPlaceholderConfigurer 的基本概念 三.PropertyPlaceholder ...

  5. PyTorch学习问题记录

    Q1:def train() 中的model.train()的作用是什么?为什么要写? A1:class torch.nn.Module中 train(mode=True) Sets the modu ...

  6. 数据结构------------------二叉查找树(BST)的java实现

    数据结构------------------二叉查找树(BST)的java实现 二叉查找树(BST)是一种能够将链表插入的灵活性和有序数组查找的高效性相结合的一种数据结构.它的定义如下: 二叉查找树是 ...

  7. composer配置和安装php框架

    第一步:安装composerwin环境安装:下载地址:https://getcomposer.org/Composer-Setup.exe 下载后直接点击安装即可测试:cmd ->compose ...

  8. 手动安装pip

    apt-get instal pip  成功之后,有根据pip的提示,进行了升级,升级之后,pip就出问题了 为了解决上面问题,手动安装pip,依次执行下面命令 1 2 3 4 5 [root@min ...

  9. 转:MapReduce原理与设计思想

    转自:http://www.cnblogs.com/wuyudong/p/mapreduce-principle.html 简单解释 MapReduce 算法 一个有趣的例子 你想数出一摞牌中有多少张 ...

  10. c#高级编程笔记----委托

    因为定义委托基本上是定义一个新类,所以可以在定义类的任何相同地方定义委托,也就是说,可以在另一个类的内部定义,也可以在任何类的外部定义,还可以在名称空间中把委托定义为顶层对象.根据定义的可见性,和委托 ...