题意  输入a1,a2,a3,a4,a5  求有多少种不同的x1,x2,x3,x4,x5序列使得等式成立   a,x取值在-50到50之间

直接暴力的话肯定会超时的   100的五次方  10e了都    然后能够考虑将等式变一下形   把a1*x1^3+a2*x2^3移到右边   也就是-(a1*x1^3+a2^x2^3)=a3*x3^3+a4*x4^3+a5*x5^3

考虑到a1*x1^3+a2^x2^3的最大值50*50^3+50*50^3=12500000  这个数并不大  能够开这么大的数组把每一个结果出现的次数存下来   又由于结果最小可能是负的12500000   负数不能做数组的下标   加上个12500000*2即可了   这样分别枚举左右两边   把左边出现过的结果都存在一个数组里面    再枚举右边   没出现一次结果  答案就加上前面这个结果出现的次数
   枚举完就出现答案了

#include<cstdio>
#include<cstring>
using namespace std;
const int maxs = 50 * 50 * 50 * 50 * 4 + 10;
unsigned short cnt[maxs];
int main()
{
int a1, a2, a3, a4, a5, sum,ans=0;
scanf ("%d%d%d%d%d", &a1, &a2, &a3, &a4, &a5);
for (int x1 = -50; x1 <= 50; ++x1)
{
if (x1 == 0) ++x1;
for (int x2 = -50; x2 <= 50; ++x2)
{
if (x2 == 0) ++x2;
sum = (a1 * x1 * x1 * x1 + a2 * x2 * x2 * x2) * (-1);
if (sum < 0) ++cnt[sum + maxs];
else ++cnt[sum];
}
} for (int x3 = -50; x3 <= 50; ++x3)
{
if (x3 == 0) ++x3;
for (int x4 = -50; x4 <= 50; ++x4)
{
if (x4 == 0) ++x4;
for (int x5 = -50; x5 <= 50; ++x5)
{
if (x5 == 0) ++x5;
sum = (a3 * x3 * x3 * x3 + a4 * x4 * x4 * x4 + a5 * x5 * x5 * x5) ;
if (sum < 0) sum += maxs;
ans += cnt[sum];
}
}
}
printf ("%d\n", ans);
return 0;
}
Eqs

Description

Consider equations having the following form: 

a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 

The coefficients are given integers from the interval [-50,50]. 

It is consider a solution a system (x1, x2, x3, x4, x5) that verifies the equation, xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}. 



Determine how many solutions satisfy the given equation. 

Input

The only line of input contains the 5 coefficients a1, a2, a3, a4, a5, separated by blanks.

Output

The output will contain on the first line the number of the solutions for the given equation.

Sample Input

37 29 41 43 47

Sample Output

654

还实用hashmap做的  空间优化了不少

#include<iostream>
#include<cstdio>
#include<cstring>
#include<hash_map>
using namespace std;
int first[50*50*50+10];
int ecnt,w[10005],v[10005],nex[10005]; void add(int x)
{
int t=(x+50*50*50*100)/200,flag=1;
for(int e=first[t];(~e)&&flag;e=nex[e])
{
if(v[e]==x)
{
flag=0,w[e]++;
}
}
if(flag)
{
w[ecnt]=1;
v[ecnt]=x;
nex[ecnt]=first[t];
first[t]=ecnt++;
}
}
int getcnt(int x)
{
if(x>50*50*50*50*2||x<-50*50*50*50*2)return 0;
int t=(x+50*50*50*100)/200;
for(int e=first[t];(~e);e=nex[e])
{
if(v[e]==x)return w[e];
}
return 0;
}
int main()
{
int a1, a2, a3, a4, a5, sum,ans=0;
scanf ("%d%d%d%d%d", &a1, &a2, &a3, &a4, &a5);
memset(first,-1,sizeof first);
ecnt=0;
for (int x1 = -50; x1 <= 50; ++x1)
{
if (x1 == 0) ++x1;
for (int x2 = -50; x2 <= 50; ++x2)
{
if (x2 == 0) ++x2;
sum = (a1 * x1 * x1 * x1 + a2 * x2 * x2 * x2) * (-1);
add(sum);
}
}
for (int x3 = -50; x3 <= 50; ++x3)
{
if (x3 == 0) ++x3;
for (int x4 = -50; x4 <= 50; ++x4)
{
if (x4 == 0) ++x4;
for (int x5 = -50; x5 <= 50; ++x5)
{
if (x5 == 0) ++x5;
sum = (a3 * x3 * x3 * x3 + a4 * x4 * x4 * x4 + a5 * x5 * x5 * x5) ;
ans +=getcnt(sum);
}
}
}
printf ("%d\n", ans);
return 0;
}

POJ 1840 Eqs(hash)的更多相关文章

  1. poj 1840 Eqs (hash)

    题目:http://poj.org/problem?id=1840 题解:http://blog.csdn.net/lyy289065406/article/details/6647387 小优姐讲的 ...

  2. POJ 1840 Eqs 二分+map/hash

    Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The co ...

  3. POJ 1840 Eqs

    Eqs Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 15010   Accepted: 7366 Description ...

  4. POJ 1840 Eqs 解方程式, 水题 难度:0

    题目 http://poj.org/problem?id=1840 题意 给 与数组a[5],其中-50<=a[i]<=50,0<=i<5,求有多少组不同的x[5],使得a[0 ...

  5. POJ 1840 Eqs(乱搞)题解

    思路:这题好像以前有类似的讲过,我们把等式移一下,变成 -(a1*x1^3 + a2*x2^3)== a3*x3^3 + a4*x4^3 + a5*x5^3,那么我们只要先预处理求出左边的答案,然后再 ...

  6. poj 1840 Eqs 【解五元方程+分治+枚举打表+二分查找所有key 】

    Eqs Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 13955   Accepted: 6851 Description ...

  7. POJ 1840 Eqs 暴力

      Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The ...

  8. Eqs - poj 1840(hash)

    题意:对于方程:a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 ,有xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}. 现在给出a1,a2,a3, ...

  9. POJ 1840 HASH

    题目链接:http://poj.org/problem?id=1840 题意:公式a1x1^3+ a2x2^3+ a3x3^3+ a4x4^3+ a5x5^3=0,现在给定a1~a5,求有多少个(x1 ...

随机推荐

  1. jdk、maven、tomcat环境变量配置

    1.jdk 新建环境变量: JAVA_HOME:C:\Program Files\Java\jdk1.8.0_91 CLASSPATH:.;%JAVA_HOME%\lib;%JAVA_HOME%\li ...

  2. HDU1086 You can Solve a Geometry Problem too(计算几何)

    You can Solve a Geometry Problem too                                         Time Limit: 2000/1000 M ...

  3. querySelector和getElementById之间的区别

    一.概述 今天在看js的时候发现里面的代码基本上都是用querySelector()和querySelectorAll()来获取元素,就有点疑惑为什么不用getElementById(),可能也是因为 ...

  4. 获取元素位置信息和所占空间大小(via:js&jquery)

    工作中有一个很常见的需求,hover或者click某元素后,在该元素旁边出现弹框,主要就是获取该元素的位置坐标以及元素所占区块的大小.最近工作中就遇到了,发现js和jquery的实现方法有很大的区别, ...

  5. Android Studio 中.android 文件夹移动默认位置

    转自 开发工具打造: .android 文件夹移动默认位置 .android 文件夹是用来存放 avd 模拟器文件的文件夹. 因为默认是 C盘 的. 占用空间比较大.很不爽 将它移动到其它盘其实很简单 ...

  6. Scut游戏服务器引擎6.0.5.0发布-支持C#脚本

    1. 增加C#脚本支持2. 增加Pay和Sns中间件对Mysql数据库支持3. 精简布署步骤,取消Redis写入程序,将其移到游戏底层运行4. 修正Mysql对中文可能会出现乱码的BUG 点击下载:S ...

  7. MFC中 给基于CFormView的单文档添加背景图片

    关于基于CFormView的单文档应用程序,添加一个图片背景的方法之一如下: 下面是利用LoadImage实现.(先在程序目录中添加背景图片back.bmp) 1.在view类中添加类成员变量:(为C ...

  8. 【Todo】Python中文及Java中文问题及解决方法总结 & 及各种字符编码问题跟踪贴

    Python中文编码问题看这里吧:http://www.cnblogs.com/charlesblc/p/6159109.html Mysql中文编码问题可以看这篇:http://www.cnblog ...

  9. 如何从底层调试docker

    How the docker container creation process works (from docker run to runc) Over the past few months I ...

  10. HTML5 Canvas 绘制旋转45度佛教万字

    效果如下: 代码如下: <!DOCTYPE html> <html lang="utf-8"> <meta http-equiv="Cont ...