POJ 1840 Eqs(hash)
题意 输入a1,a2,a3,a4,a5 求有多少种不同的x1,x2,x3,x4,x5序列使得等式成立 a,x取值在-50到50之间
直接暴力的话肯定会超时的 100的五次方 10e了都 然后能够考虑将等式变一下形 把a1*x1^3+a2*x2^3移到右边 也就是-(a1*x1^3+a2^x2^3)=a3*x3^3+a4*x4^3+a5*x5^3
考虑到a1*x1^3+a2^x2^3的最大值50*50^3+50*50^3=12500000 这个数并不大 能够开这么大的数组把每一个结果出现的次数存下来 又由于结果最小可能是负的12500000 负数不能做数组的下标 加上个12500000*2即可了 这样分别枚举左右两边 把左边出现过的结果都存在一个数组里面 再枚举右边 没出现一次结果 答案就加上前面这个结果出现的次数
枚举完就出现答案了
#include<cstdio>
#include<cstring>
using namespace std;
const int maxs = 50 * 50 * 50 * 50 * 4 + 10;
unsigned short cnt[maxs];
int main()
{
int a1, a2, a3, a4, a5, sum,ans=0;
scanf ("%d%d%d%d%d", &a1, &a2, &a3, &a4, &a5);
for (int x1 = -50; x1 <= 50; ++x1)
{
if (x1 == 0) ++x1;
for (int x2 = -50; x2 <= 50; ++x2)
{
if (x2 == 0) ++x2;
sum = (a1 * x1 * x1 * x1 + a2 * x2 * x2 * x2) * (-1);
if (sum < 0) ++cnt[sum + maxs];
else ++cnt[sum];
}
} for (int x3 = -50; x3 <= 50; ++x3)
{
if (x3 == 0) ++x3;
for (int x4 = -50; x4 <= 50; ++x4)
{
if (x4 == 0) ++x4;
for (int x5 = -50; x5 <= 50; ++x5)
{
if (x5 == 0) ++x5;
sum = (a3 * x3 * x3 * x3 + a4 * x4 * x4 * x4 + a5 * x5 * x5 * x5) ;
if (sum < 0) sum += maxs;
ans += cnt[sum];
}
}
}
printf ("%d\n", ans);
return 0;
}
Description
a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0
The coefficients are given integers from the interval [-50,50].
It is consider a solution a system (x1, x2, x3, x4, x5) that verifies the equation, xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}.
Determine how many solutions satisfy the given equation.
Input
Output
Sample Input
37 29 41 43 47
Sample Output
654
还实用hashmap做的 空间优化了不少
#include<iostream>
#include<cstdio>
#include<cstring>
#include<hash_map>
using namespace std;
int first[50*50*50+10];
int ecnt,w[10005],v[10005],nex[10005]; void add(int x)
{
int t=(x+50*50*50*100)/200,flag=1;
for(int e=first[t];(~e)&&flag;e=nex[e])
{
if(v[e]==x)
{
flag=0,w[e]++;
}
}
if(flag)
{
w[ecnt]=1;
v[ecnt]=x;
nex[ecnt]=first[t];
first[t]=ecnt++;
}
}
int getcnt(int x)
{
if(x>50*50*50*50*2||x<-50*50*50*50*2)return 0;
int t=(x+50*50*50*100)/200;
for(int e=first[t];(~e);e=nex[e])
{
if(v[e]==x)return w[e];
}
return 0;
}
int main()
{
int a1, a2, a3, a4, a5, sum,ans=0;
scanf ("%d%d%d%d%d", &a1, &a2, &a3, &a4, &a5);
memset(first,-1,sizeof first);
ecnt=0;
for (int x1 = -50; x1 <= 50; ++x1)
{
if (x1 == 0) ++x1;
for (int x2 = -50; x2 <= 50; ++x2)
{
if (x2 == 0) ++x2;
sum = (a1 * x1 * x1 * x1 + a2 * x2 * x2 * x2) * (-1);
add(sum);
}
}
for (int x3 = -50; x3 <= 50; ++x3)
{
if (x3 == 0) ++x3;
for (int x4 = -50; x4 <= 50; ++x4)
{
if (x4 == 0) ++x4;
for (int x5 = -50; x5 <= 50; ++x5)
{
if (x5 == 0) ++x5;
sum = (a3 * x3 * x3 * x3 + a4 * x4 * x4 * x4 + a5 * x5 * x5 * x5) ;
ans +=getcnt(sum);
}
}
}
printf ("%d\n", ans);
return 0;
}
POJ 1840 Eqs(hash)的更多相关文章
- poj 1840 Eqs (hash)
题目:http://poj.org/problem?id=1840 题解:http://blog.csdn.net/lyy289065406/article/details/6647387 小优姐讲的 ...
- POJ 1840 Eqs 二分+map/hash
Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The co ...
- POJ 1840 Eqs
Eqs Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 15010 Accepted: 7366 Description ...
- POJ 1840 Eqs 解方程式, 水题 难度:0
题目 http://poj.org/problem?id=1840 题意 给 与数组a[5],其中-50<=a[i]<=50,0<=i<5,求有多少组不同的x[5],使得a[0 ...
- POJ 1840 Eqs(乱搞)题解
思路:这题好像以前有类似的讲过,我们把等式移一下,变成 -(a1*x1^3 + a2*x2^3)== a3*x3^3 + a4*x4^3 + a5*x5^3,那么我们只要先预处理求出左边的答案,然后再 ...
- poj 1840 Eqs 【解五元方程+分治+枚举打表+二分查找所有key 】
Eqs Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 13955 Accepted: 6851 Description ...
- POJ 1840 Eqs 暴力
Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The ...
- Eqs - poj 1840(hash)
题意:对于方程:a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 ,有xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}. 现在给出a1,a2,a3, ...
- POJ 1840 HASH
题目链接:http://poj.org/problem?id=1840 题意:公式a1x1^3+ a2x2^3+ a3x3^3+ a4x4^3+ a5x5^3=0,现在给定a1~a5,求有多少个(x1 ...
随机推荐
- duilib入门简明教程 -- VS环境配置(2) (转)
原文转自:http://www.cnblogs.com/Alberl/p/3342030.html 既然是入门教程,那当然得基础点,因为搜索duilib相关资料时,发现有些小伙伴到处都是编译错 ...
- CentOS下Yum使用
1. 介绍 Yum,即Yellow dog Updater Modified,是一个基于 RPM 包管理的字符前端软件包管理器:能够从指定的服务器自动下载 RPM 包并且安装,可以处理依赖性关系,并且 ...
- 泛型数组 + 记录类型 + Json 之间的转换
unit Unit3; interface uses Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants, System ...
- 属性动画详解一(Property Animation)
效果图: Android动画有3类: 1.View Animation (Tween Animation) 2.Drawable Animation (Frame Animation) 2.Prope ...
- hdu 4989(水题)
Summary Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Sub ...
- AC日记——【模板】普通平衡树(Treap/SBT) 洛谷 P3369
[模板]普通平衡树(Treap/SBT) 思路: 劳资敲了一个多星期: 劳资终于a了: 劳资一直不a是因为一个小错误: 劳资最后看的模板: 劳资现在很愤怒: 劳资不想谈思路!!! 来,上代码: #in ...
- Codeforces Gym100971 C.Triangles-组三角形 (IX Samara Regional Intercollegiate Programming Contest Russia, Samara, March 13)
这个题就是组三角形,从给出的数组里任选两个和未知的边组三角形. 任意两边之和大于第三边,记住这个就可以了. 代码: 1 #include<cstdio> 2 #include<cst ...
- 牛客练习赛10 E题 数列查找 (分块思想 + 莫队算法)
题目链接 数列查找 考虑分块然后跑莫队, 设$c[i]$为$i$在当前维护的区间内出现的次数, $g[i]$为在当前维护的区间内有多少个数出现次数为$i$, $bg[i]$把出现次数分块,$bg[i ...
- delphi 按位运算 not and or xor shl shr
delphi 按位运算 not and or xor shl shr unit Unit1; interface uses Windows, Messages, SysUtils, Var ...
- Android Spinner In Toolbar
As the title of the post suggest in this tutorial we will see how to have spinner widget inside the ...