1. 常用激活函数 

激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。

(1) 线性函数 ( Liner Function )

(2) 斜面函数 ( Ramp Function )

(3) 阈值函数 ( Threshold Function )

以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函数。

(4) S形函数 ( Sigmoid Function )

  该函数的导函数:

(5) 双极S形函数 

  该函数的导函数:

  S形函数与双极S形函数的图像如下:

图3. S形函数与双极S形函数图像

  双极S形函数与S形函数主要区别在于函数的值域,双极S形函数值域是(-1,1),而S形函数值域是(0,1)。

  由于S形函数与双极S形函数都是可导的(导函数是连续函数),因此适合用在BP神经网络中。(BP算法要求激活函数可导)

 2.数据预处理 

在训练神经网络前一般需要对数据进行预处理,一种重要的预处理手段是归一化处理。下面简要介绍归一化处理的原理与方法。

(1) 什么是归一化? 

数据归一化,就是将数据映射到[0,1]或[-1,1]区间或更小的区间,比如(0.1,0.9) 。

(2) 为什么要归一化处理? 

<1>输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢、训练时间长。

<2>数据范围大的输入在模式分类中的作用可能会偏大,而数据范围小的输入作用就可能会偏小。

<3>由于神经网络输出层的激活函数的值域是有限制的,因此需要将网络训练的目标数据映射到激活函数的值域。例如神经网络的输出层若采用S形激活函数,由于S形函数的值域限制在(0,1),也就是说神经网络的输出只能限制在(0,1),所以训练数据的输出就要归一化到[0,1]区间。

<4>S形激活函数在(0,1)区间以外区域很平缓,区分度太小。例如S形函数f(X)在参数a=1时,f(100)与f(5)只相差0.0067。

(3) 归一化算法 

  一种简单而快速的归一化算法是线性转换算法。线性转换算法常见有两种形式:

<1>y = ( x - min )/( max - min )

  其中min为x的最小值,max为x的最大值,输入向量为x,归一化后的输出向量为y 。上式将数据归一化到 [ 0 , 1 ]区间,当激活函数采用S形函数时(值域为(0,1))时这条式子适用。

<2>y = 2 * ( x - min ) / ( max - min ) - 1

这条公式将数据归一化到 [ -1 , 1 ] 区间。当激活函数采用双极S形函数(值域为(-1,1))时这条式子适用。

(4) Matlab数据归一化处理函数 

  Matlab中归一化处理数据可以采用premnmx , postmnmx , tramnmx 这3个函数。

<1> premnmx

语法:[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t)

参数:

pn: p矩阵按行归一化后的矩阵

minp,maxp:p矩阵每一行的最小值,最大值

tn:t矩阵按行归一化后的矩阵

mint,maxt:t矩阵每一行的最小值,最大值

作用:将矩阵p,t归一化到[-1,1] ,主要用于归一化处理训练数据集。

<2> tramnmx

语法:[pn] = tramnmx(p,minp,maxp)

参数:

minp,maxp:premnmx函数计算的矩阵的最小,最大值

pn:归一化后的矩阵

作用:主要用于归一化处理待分类的输入数据。

<3> postmnmx

语法: [p,t] = postmnmx(pn,minp,maxp,tn,mint,maxt)

参数:

minp,maxp:premnmx函数计算的p矩阵每行的最小值,最大值

mint,maxt:premnmx函数计算的t矩阵每行的最小值,最大值

作用:将矩阵pn,tn映射回归一化处理前的范围。postmnmx函数主要用于将神经网络的输出结果映射回归一化前的数据范围。

3.使用Matlab实现神经网络 

使用Matlab建立前馈神经网络主要会使用到下面3个函数:

newff :前馈网络创建函数

train:训练一个神经网络

sim :使用网络进行仿真

下面简要介绍这3个函数的用法。

(1) newff函数

<1>newff函数语法 

newff函数参数列表有很多的可选参数,具体可以参考Matlab的帮助文档,这里介绍newff函数的一种简单的形式。

语法:net = newff ( A, B, {C} ,‘trainFun’)

参数:

A:一个n×2的矩阵,第i行元素为输入信号xi的最小值和最大值;

B:一个k维行向量,其元素为网络中各层节点数;

C:一个k维字符串行向量,每一分量为对应层神经元的激活函数

trainFun :为学习规则采用的训练算法

<2>常用的激活函数

  常用的激活函数有:

  a) 线性函数 (Linear transfer function)

f(x) = x

  该函数的字符串为’purelin’。

 

b) 对数S形转移函数( Logarithmic sigmoid transfer function )

该函数的字符串为’logsig’。

c) 双曲正切S形函数 (Hyperbolic tangent sigmoid transfer function )

  也就是上面所提到的双极S形函数。该函数的字符串为’ tansig’。

  Matlab的安装目录下的toolbox\nnet\nnet\nntransfer子目录中有所有激活函数的定义说明。

<3>常见的训练函数

常见的训练函数有:

traingd :梯度下降BP训练函数(Gradient descent backpropagation)

traingdx :梯度下降自适应学习率训练函数

<4>网络配置参数

一些重要的网络配置参数如下:

net.trainparam.goal  :神经网络训练的目标误差

net.trainparam.show   : 显示中间结果的周期

net.trainparam.epochs  :最大迭代次数

net.trainParam.lr    : 学习率

(2) train函数

网络训练学习函数。

语法:[ net, tr, Y1, E ]  = train( net, X, Y )

参数:

X:网络实际输入

Y:网络应有输出

tr:训练跟踪信息

Y1:网络实际输出

E:误差矩阵

(3) sim函数

语法:Y=sim(net,X)

参数:

net:网络

X:输入给网络的K×N矩阵,其中K为网络输入个数,N为数据样本数

Y:输出矩阵Q×N,其中Q为网络输出个数

(4) Matlab BP网络实例 

我将Iris数据集分为2组,每组各75个样本,每组中每种花各有25个样本。其中一组作为以上程序的训练样本,另外一组作为检验样本。为了方便训练,将3类花分别编号为1,2,3 。

  使用这些数据训练一个4输入(分别对应4个特征),3输出(分别对应该样本属于某一品种的可能性大小)的前向网络。

Matlab程序如下:

%读取训练数据
[f1,f2,f3,f4,class] = textread('trainData.txt' , '%f%f%f%f%f',150); %注意数据格式,数据之间有逗号和空格之分;然后类别为1,2,3 %特征值归一化
[input,minI,maxI] = premnmx( [f1 , f2 , f3 , f4 ]') ; %构造输出矩阵
s = length( class) ;
output = zeros( s , 3 ) ;
for i = 1 : s
output( i , class( i ) ) = 1 ;
end %创建神经网络
net = newff( minmax(input) , [10 3] , { 'logsig' 'purelin' } , 'traingdx' ) ; %设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 500 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ; %开始训练
net = train( net, input , output' ) ; %读取测试数据
[t1 t2 t3 t4 c] = textread('testData.txt' , '%f%f%f%f%f',150); %测试数据归一化
testInput = tramnmx ( [t1,t2,t3,t4]' , minI, maxI ) ; %仿真
Y = sim( net , testInput ) %统计识别正确率
[s1 , s2] = size( Y ) ;
hitNum = 0 ;
for i = 1 : s2
[m , Index] = max( Y( : , i ) ) ;
if( Index == c(i) )
hitNum = hitNum + 1 ;
end
end
sprintf('识别率是 %3.3f%%',100 * hitNum / s2 )

实验结果:

其他的神经网络:

%产生指定类别的样本点,并在图中绘出
X = [0 1; 0 1]; % 限制类中心的范围
clusters = 5; % 指定类别数目
points = 10; % 指定每一类的点的数目
std_dev = 0.05; % 每一类的标准差
P = nngenc(X,clusters,points,std_dev);
plot(P(1,:),P(2,:),'+r');
title('输入样本向量');
xlabel('p(1)');
ylabel('p(2)'); %建立网络
net=newc([0 1;0 1],5,0.1); %设置神经元数目为5
%得到网络权值,并在图上绘出
figure;
plot(P(1,:),P(2,:),'+r');
w=net.iw{1}
hold on;
plot(w(:,1),w(:,2),'ob');
hold off;
title('输入样本向量及初始权值');
xlabel('p(1)');
ylabel('p(2)');
figure;
plot(P(1,:),P(2,:),'+r');
hold on; %训练网络
net.trainParam.epochs=7;
net=init(net);
net=train(net,P);
%得到训练后的网络权值,并在图上绘出
w=net.iw{1}
plot(w(:,1),w(:,2),'ob');
hold off;
title('输入样本向量及更新后的权值');
xlabel('p(1)');
ylabel('p(2)');
a=0;
p = [0.6 ;0.8];
a=sim(net,p) %**************指定输入二维向量及其类别*******************
P = [-3 -2 -2 0 0 0 0 +2 +2 +3;
0 +1 -1 +2 +1 -1 -2 +1 -1 0];
C = [1 1 1 2 2 2 2 1 1 1];
%将这些类别转换成学习向量量化网络使用的目标向量
T = ind2vec(C)
%用不同的颜色,绘出这些输入向量
plotvec(P,C),
title('输入二维向量');
xlabel('P(1)');
ylabel('P(2)'); %建立网络
net = newlvq(minmax(P),4,[.6 .4],0.1);
%在同一幅图上绘出输入向量及初始权重向量
figure;
plotvec(P,C)
hold on
W1=net.iw{1};
plot(W1(1,1),W1(1,2),'ow')
title('输入以及权重向量');
xlabel('P(1), W(1)');
ylabel('P(2), W(2)');
hold off; %训练网络,并再次绘出权重向量
figure;
plotvec(P,C);
hold on;
net.trainParam.epochs=150;
net.trainParam.show=Inf;
net=train(net,P,T);
plotvec(net.iw{1}',vec2ind(net.lw{2}),'o');
%对于一个特定的点,得到网络的输出
p = [0.8; 0.3];
a = vec2ind(sim(net,p)) %%%%%%%%%**********随机生成1000个二维向量,作为样本,并绘出其分布*************
P = rands(2,1000);
plot(P(1,:),P(2,:),'+r')
title('初始随机样本点分布');
xlabel('P(1)');
ylabel('P(2)'); %建立网络,得到初始权值
net=newsom([0 1; 0 1],[5 6]);
w1_init=net.iw{1,1}
%绘出初始权值分布图
figure;
plotsom(w1_init,net.layers{1}.distances)
%分别对不同的步长,训练网络,绘出相应的权值分布图
for i=10:30:100
net.trainParam.epochs=i;
net=train(net,P);
figure;
plotsom(net.iw{1,1},net.layers{1}.distances)
end
%对于训练好的网络,选择特定的输入向量,得到网络的输出结果
p=[0.5;0.3];
a=0;
a = sim(net,p)

实践认识--ANN的更多相关文章

  1. 从下往上看--新皮层资料的读后感 第三部分 70年前的逆向推演- 从NN到ANN

    第三部分 NN-ANN 70年前的逆向推演 从这部分开始,调整一下视角主要学习神经网络算法,将其与生物神经网络进行横向的比较,以窥探一二. 现在基于NN的AI应用几乎是满地都是,效果也不错,这种貌似神 ...

  2. 【机器学习】人工神经网络ANN

    神经网络是从生物领域自然的鬼斧神工中学习智慧的一种应用.人工神经网络(ANN)的发展经历的了几次高潮低谷,如今,随着数据爆发.硬件计算能力暴增.深度学习算法的优化,我们迎来了又一次的ANN雄起时代,以 ...

  3. SVM-支持向量机原理详解与实践

    前言 去年由于工作项目的需要实际运用到了SVM和ANN算法,也就是支持向量机和人工神经网络算法,主要是实现项目中的实时采集图片(工业高速摄像头采集)的图像识别的这一部分功能,虽然几经波折,但是还好最终 ...

  4. 人工神经网络--ANN

    神经网络是一门重要的机器学习技术.它是目前最为火热的研究方向--深度学习的基础.学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术. 本文以一种简单的,循序的方 ...

  5. Spring Validation最佳实践及其实现原理,参数校验没那么简单!

    之前也写过一篇关于Spring Validation使用的文章,不过自我感觉还是浮于表面,本次打算彻底搞懂Spring Validation.本文会详细介绍Spring Validation各种场景下 ...

  6. Python应用与实践-转自(吴秦(Tyler))

    1.      Python是什么? 1.1.      Python语言 1.2.      Python哲学 2.      Python在工作中的应用 2.1.      实例1:文件批量处理 ...

  7. Python设计模式: 最佳的"策略"模式实践代码

    Python设计模式: 最佳的"策略"模式实践代码 今天抽空看了下流畅的python,发现里面介绍了不少python自带的库的使用实例,用起来非常的优雅. 平时用Python来写爬 ...

  8. webp图片实践之路

    最近,我们在项目中实践了webp图片,并且抽离出了工具模块,整合到了项目的基础模板中.传闻IOS10也将要支持webp,那么使用webp带来的性能提升将更加明显.估计在不久的将来,webp会成为标配. ...

  9. Hangfire项目实践分享

    Hangfire项目实践分享 目录 Hangfire项目实践分享 目录 什么是Hangfire Hangfire基础 基于队列的任务处理(Fire-and-forget jobs) 延迟任务执行(De ...

随机推荐

  1. spring boot 启动慢的原因

    停留在Spring logo那里差不多4分钟 SpringBoot启动慢的原因应该是某些应用占用了spring config server默认的端口8888,然后SpringCloud进程有些引用了s ...

  2. Mysql - 安装及初始化设置

    1. 下载mysql-5.7.13-tar.gz http://dev.mysql.com/get/Downloads/MySQL-5.7/mysql-5.7.13-linux-glibc2.5-x8 ...

  3. 是男人就过 8 题--Pony.AI A AStringGame

    链接:https://www.nowcoder.com/acm/contest/92/A来源:牛客网 AStringGame 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 26214 ...

  4. C/C++、Java、Python谁是编译型语言,谁是解释型语言?

    最近各大互联网公司线上笔试,编程题目里的编译器只支持C/C++.Java,甚至有的支持javaScrpit和Pascal,就是不支持Python.让一直以来用惯了Python的我直吐血,于是今天痛定思 ...

  5. NOJ——1672剪绳子(博弈)

    [1672] 剪绳子 时间限制: 500 ms 内存限制: 65535 K 问题描述 已知长度为n的线圈,两人依次截取1~m的长度,n, m为整数,不能取者为输. 输入 输入n, m:( 0 < ...

  6. [HDNOIP2017提高组]题解

    (送给外省的同学们:HD = 海淀) [HDNOIP201701]小鱼干 试题描述 小喵喵有 n 个小鱼干排成一列,其中第 i 个小鱼干有两种属性,美味度 ai 和特殊度 bi. 现在小喵喵要吃掉一些 ...

  7. BZOJ2527 [Poi2011]Meteors 【整体二分 + 树状数组】

    题目 Byteotian Interstellar Union有N个成员国.现在它发现了一颗新的星球,这颗星球的轨道被分为M份(第M份和第1份相邻),第i份上有第Ai个国家的太空站. 这个星球经常会下 ...

  8. 浅谈android反调试之轮询TracePid(解决方案是特色)

    参考文章: 1.  http://bbs.pediy.com/thread-207538.htm 2.  http://www.wjdiankong.cn/android 需求: 常见的Android ...

  9. python中的 __xxx__ 方法

    1 __class__ instance.__class__ The class to which a class instance belongs def foo(): pass class A(o ...

  10. 如何选择IO流

    1)确定是数据源和数据目的(输入还是输出) 源:输入流 InputStream Reader 目的:输出流 OutputStream Writer 2)明确操作的数据对象是否是纯文本 是:字符流Rea ...