POJ:1751-Highways(Kruskal和Prim)
Highways
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 6078 Accepted: 1650 Special Judge
Description
The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor system of public highways. The Flatopian government is aware of this problem and has already constructed a number of highways connecting some of the most important towns. However, there are still some towns that you can’t reach via a highway. It is necessary to build more highways so that it will be possible to drive between any pair of towns without leaving the highway system.
Flatopian towns are numbered from 1 to N and town i has a position given by the Cartesian coordinates (xi, yi). Each highway connects exaclty two towns. All highways (both the original ones and the ones that are to be built) follow straight lines, and thus their length is equal to Cartesian distance between towns. All highways can be used in both directions. Highways can freely cross each other, but a driver can only switch between highways at a town that is located at the end of both highways.
The Flatopian government wants to minimize the cost of building new highways. However, they want to guarantee that every town is highway-reachable from every other town. Since Flatopia is so flat, the cost of a highway is always proportional to its length. Thus, the least expensive highway system will be the one that minimizes the total highways length.
Input
The input consists of two parts. The first part describes all towns in the country, and the second part describes all of the highways that have already been built.
The first line of the input file contains a single integer N (1 <= N <= 750), representing the number of towns. The next N lines each contain two integers, xi and yi separated by a space. These values give the coordinates of ith town (for i from 1 to N). Coordinates will have an absolute value no greater than 10000. Every town has a unique location.
The next line contains a single integer M (0 <= M <= 1000), representing the number of existing highways. The next M lines each contain a pair of integers separated by a space. These two integers give a pair of town numbers which are already connected by a highway. Each pair of towns is connected by at most one highway.
Output
Write to the output a single line for each new highway that should be built in order to connect all towns with minimal possible total length of new highways. Each highway should be presented by printing town numbers that this highway connects, separated by a space.
If no new highways need to be built (all towns are already connected), then the output file should be created but it should be empty.
Sample Input
9
1 5
0 0
3 2
4 5
5 1
0 4
5 2
1 2
5 3
3
1 3
9 7
1 2
Sample Output
1 6
3 7
4 9
5 7
8 3
解题心得:
- 题目很简单,就是跑一个最小生成树,然后记录需要建立的新边。但是很坑啊,题目中说如果没有输出那么就会建立一个空白的文件,所以如果是写的多组输入,就会WA,不知道为啥,可能是没有建立空白的新文件吧。
- 然后就是邪最小生成树,两种写法
- Kruskal算法先得出每一条边,然后对边排序,从小的边开始选择,用并查集来判断是否形成了环。
- Prim算法是选择一个点,然后找出距离这个点最近的一个点,连成边,然后以找出的店为目标,再从没被连接的点中找出一个距离最近的点,连成边,然后一直将所有的点全部连接。
Kruskal算法代码:
#include<stdio.h>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
using namespace std;
const int maxn = 1e3+100;
struct node
{
int x,y;
} p[maxn*maxn];
struct Path
{
int s,e,len;
} path[maxn*maxn];
int n,m,father[maxn*maxn],ans,t;
vector <pair<int,int> > ve;
bool cmp(Path a,Path b)
{
return a.len<b.len;
}
int find(int x)
{
if(father[x] == x)
return x;
return father[x] = find(father[x]);
}
void merge(int x,int y)
{
int fx = find(x);
int fy = find(y);
if(fx != fy)
father[fy] = fx;
}
int dis(int x,int y)
{
int d = (p[x].x - p[y].x)*(p[x].x - p[y].x) + (p[x].y - p[y].y)*(p[x].y - p[y].y);
return d;
}
void init()
{
ans = t = 0;
for(int i=1; i<=n; i++)
{
father[i] = i;
scanf("%d%d",&p[i].x,&p[i].y);
}
//枚举每一条边
for(int i=1; i<=n; i++)
for(int j=i+1; j<=n; j++)
{
path[t].s = i;
path[t].e = j;
path[t++].len = dis(i,j);
}
sort(path,path+t,cmp);//将边从小到大排序
cin>>m;
for(int i=0; i<m; i++)
{
int a,b;
scanf("%d%d",&a,&b);
if(find(a) != find(b))
merge(a,b);//将已经有路的点合并
}
}
void solve()
{
for(int i=0; i<t; i++)
{
int x = path[i].s;
int y = path[i].e;
int len = path[i].len;
if(find(x) != find(y))//如果不是同一个祖先那么连接就不会形成环
{
ans += len;
merge(x,y);
ve.push_back(make_pair(x,y));//记录需要连接的点
}
}
for(int i=0; i<ve.size(); i++)
{
pair<int,int> p;
p = ve[i];
printf("%d %d\n",p.first,p.second);
}
ve.clear();
}
int main()
{
cin>>n;
init();
solve();
return 0;
}
Prim算法代码
#include<stdio.h>
#include<cstring>
#include<iostream>
using namespace std;
const int maxn = 1000;
//lowcast记录的是各点距离已经生成了的树的距离
int maps[maxn][maxn],lowcost[maxn],n,m,Edge[maxn];
bool vis[maxn];//记录点是否已经在树中
struct NODE
{
int x,y;
}node[maxn];
int get_dis(int x,int y)
{
int dis = (node[x].x - node[y].x)*(node[x].x - node[y].x) + (node[x].y - node[y].y)*(node[x].y - node[y].y);
return dis;
}
void init()
{
cin>>n;
for(int i=1;i<=n;i++)
{
scanf("%d%d",&node[i].x,&node[i].y);
for(int j=1;j<i;j++)
maps[i][j] = maps[j][i] = get_dis(i,j);//记录两点之间的距离
maps[i][i] = 0x3f3f3f3f;//不可能自身到自身
}
memset(vis,0,sizeof(vis));//记录该点是否已经在树上
vis[1] = 1;
cin>>m;
while(m--)
{
int a,b;
scanf("%d%d",&a,&b);
maps[a][b] = maps[b][a] = 0;
}
for(int i=1;i<=n;i++)
{
lowcost[i] = maps[i][1];//先得到所有点距离第一个点的距离
Edge[i] = 1;
}
}
void Prim()
{
for(int i=1;i<n;i++)
{
int Min = 0x3f3f3f3f;
int point;
for(int j=1;j<=n;j++)//当前树距离最近的点
if(!vis[j] && Min > lowcost[j])
{
Min = lowcost[j];
point = j;
}
vis[point] = true;//将这个点加入树中
for(int k=1;k<=n;k++)
{
if(!vis[k] && lowcost[k] > maps[point][k])
{
Edge[k] = point;//记录添加边的两个点
lowcost[k] = maps[point][k];
}
}
if(maps[Edge[point]][point])
printf("%d %d\n",Edge[point],point);
}
}
int main()
{
init();
Prim();
return 0;
}
POJ:1751-Highways(Kruskal和Prim)的更多相关文章
- POJ 1751 Highways (kruskal)
题目链接:http://poj.org/problem?id=1751 题意是给你n个点的坐标,然后给你m对点是已经相连的,问你还需要连接哪几对点,使这个图为最小生成树. 这里用kruskal不会超时 ...
- POJ 1751 Highways(最小生成树&Prim)题解
思路: 一开始用Kruskal超时了,因为这是一个稠密图,边的数量最惨可能N^2,改用Prim. Prim是这样的,先选一个点(这里选1)作为集合A的起始元素,然后其他点为集合B的元素,我们要做的就是 ...
- POJ 1751 Highways (最小生成树)
Highways Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Submit Sta ...
- POJ 1751 Highways 【最小生成树 Kruskal】
Highways Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 23070 Accepted: 6760 Speci ...
- POJ 1751 Highways(最小生成树Prim普里姆,输出边)
题目链接:点击打开链接 Description The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has ...
- POJ 1751 Highways (最小生成树)
Highways 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/G Description The island nation ...
- POJ 1751 Highways (ZOJ 2048 ) MST
http://poj.org/problem?id=1751 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2048 题目大 ...
- (poj) 1751 Highways
Description The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor ...
- Highways POJ-1751 最小生成树 Prim算法
Highways POJ-1751 最小生成树 Prim算法 题意 有一个N个城市M条路的无向图,给你N个城市的坐标,然后现在该无向图已经有M条边了,问你还需要添加总长为多少的边能使得该无向图连通.输 ...
- 关于最小生成树 Kruskal 和 Prim 的简述(图论)
模版题为[poj 1287]Networking. 题意我就不说了,我就想简单讲一下Kruskal和Prim算法.卡Kruskal的题似乎几乎为0.(●-`o´-)ノ 假设有一个N个点的连通图,有M条 ...
随机推荐
- mysql 无法启动 unkown command
1. https://serverfault.com/questions/490656/mysql-not-starting-error-usr-sbin-mysqld-unknown-option- ...
- leecode-39. Combination Sum
1.问题描述: Given a set of candidate numbers (C) (without duplicates) and a target number (T), find all ...
- (转)Linux命令之Ethtool用法详解
Linux命令之Ethtool用法详解 原文:http://www.linuxidc.com/Linux/2012-01/52669.htm Linux/Unix命令之Ethtool描述:Ethtoo ...
- 宿主机Windows访问虚拟机Linux文件(二)
上一篇文章中详细讲述FTP服务(基于文件传输协议的服务),本文则介绍另一种能够实现此功能Telnet(Telecommunications network 远程登陆)服务.本文介绍的telnet我常用 ...
- SQL Server扩展事件system_health会话总结
system_health会话概念 我们知道扩展事件(Extended Events)是从SQL Server 2008开始引入的.system_health会话是SQL Server默认包含的扩展事 ...
- SQL Server 填充因子
在创建聚集索引时,表中的数据按照索引列中的值的顺序存储在数据库的数据页中.在表中插入新的数据行或更改索引列中的值时,Microsoft® SQL Server™ 2000 可能必须重新 ...
- Jquery 事件 DOM操作
常规事件: 把JS的事件 on去掉即可 例如:js document.getElementById("id").onclinck=function(){} Jquery ...
- 【LeetCode】9 Palindrome Number 回文数判定
题目: Determine whether an integer is a palindrome. Do this without extra space. Some hints: Could neg ...
- 进度条插件使用demo
1.下载地址: http://down.htmleaf.com/1502/201502031710.zip 2.效果图: 3.HTML代码:其中80设置当前所占百分比,即蓝色部分比例:注意引入必须的j ...
- 基于FPGA的DDS任意波形发生器设计
一.简介 DDS技术最初是作为频率合成技术提出的,由于其易于控制,相位连续,输出频率稳定度高,分辨率高, 频率转换速度快等优点,现在被广泛应用于任意波形发生器(AWG).基于DDS技术的任 ...