题意:给定一个没有填完的序列,数值为-1表示你可以用 1~k 中的数字去覆盖它,求将该序列填充后,不存在长度为奇数的回文串的方案数

分析:

  1. 使之不存在长度为奇数的回文串,只需要满足不存在长度为3的回文串即可。换句话说:\(a[i] \neq a[i+2]\) 对所有的 \(i\) 成立。可以发现 i 为奇数与 i 为偶数是互不影响的。所以可以把它划分为两个串

    1. 一个串由 $a_1,a_3,a_5, \dots $组成
    2. 另一个串由$ a_2,a_4,a_6,\dots$ 组成
  2. 现在问题转化为了:给定一个序列,将其数值为-1的位置换为1~k中的数字,使得序列中两两相邻数字不同的方案数。不妨换个角度想,任何一组连续的 -1(长度可以为0或1),两边都只有四种情况

    1. 两边都没有数字(即整个串都是-1)
    2. 两边中有一边没有没有(只有整个串的左右两端有这种情况)
    3. 两边的数字相同
    4. 两边的数字不同

    另外我们可以发现,前两种情况可以由后两种情况推出来,所以只需预处理把 0~ (n/2)+1长度的-1串的方案数都预处理出来,问题就迎刃而解了。

  3. 设\(d(i,j)\) 表示长度为 \(i\) 的 -1 串,j 为0 表示两边数字相同,为1表示两边数字不同时的方案数,\(d[0][0] = 0, d[0][1] = 1\), 有转移方程:

    • \(i\) 为奇数

      • \(d[i][0] = d[i/2][0]*d[i/2][0] + (k-1)*d[i/2][1]*d[i/2][1]\)
      • \(d[i][1] = d[i/2][0]*d[i/2][1]*2 + (k-2)*d[i/2][1]*d[i/2][1]\)
    • \(i\) 为偶数
      • \(d[i][0] = (k-1)*d[i-1][1]\)
      • \(d[i][1] = d[i-1][0] + (k-2)*d[i-1][1]%mod\)

对于 i 为奇数的情况,我们可以取出这个序列的中间位置 mid,当 -1 串两端数字相同且都等于 x 时,先假设mid数字与x相同,那就转换为了两个长度为 i/2,序列两端相同 的子问题,然后假设 mid 与 x不同,那么就有(k-1)种方法,可以同样转换成两个长度为 i/2 ,序列两端不同的子问题。当 -1 串两端数字不同时,同理。

预处理d数组之后,就可以对我们之前分好的奇偶串做处理了。思路就是记录上一个不为-1的位置。然后最后做一下特判,就可以得到正确答案了。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod = 998244353;
ll d[100010][2];
int a[100010],b[100010];
ll n,k;
ll solve(int *a,ll len){
ll res = 1;
ll last = 0;
for(ll i=1;i<=len;i++){
if(a[i] == -1)continue;
else{
if(i == 1){
last = i;continue;
}
if(last == 0){
res = res * (d[i-2][0] + (k-1)*d[i-2][1])%mod;
}
else{
if(a[i] == a[last]){
res = res * d[i-last-1][0]%mod;
}
else res = res * d[i-last-1][1]%mod;
}
last = i;
}
}
if(last==0){
res = k;
for(int i=2;i<=len;i++)res = (res*(k-1))%mod;
}
else if(last !=len){
res = res * (d[len-last-1][0] + (k-1)*d[len-last-1][1]%mod)%mod;
}
return res;
}
int main(){
scanf("%lld%lld",&n,&k);
for(int i=1;i<=n;i++){
if(i&1)scanf("%d",&a[(i+1)/2]);
else scanf("%d",&b[i/2]);
}
d[0][0] = 0;d[0][1] = 1;
for(int i=1;i<=(n+1)/2;i++){
if(i&1){
int len = i/2;
d[i][0] = (d[len][0] * d[len][0]%mod + (k-1) * d[len][1]%mod * d[len][1]%mod)%mod;
d[i][1] = (d[len][0] * d[len][1]%mod * 2%mod + (k-2) * d[len][1]%mod * d[len][1]%mod)%mod;
}
else{
d[i][0] = (d[i-1][1] * (k-1)) % mod;
d[i][1] = (d[i-1][0] + (k-2) * d[i-1][1]%mod)%mod;
}
}
printf("%lld\n",(solve(a,(n+1)/2)*solve(b,n-(n+1)/2))%mod);
return 0;
}

CF-1140 E - Palindrome-less Arrays的更多相关文章

  1. 不断更新的 ToDo-List

    有些事情要明着写出来才会去干. 这里是一个不断更新的 ToDo-List,大致按照重要度和列出时间排序,已经完成的会画上删除线. 主要着眼短期计划,其中的大部分事务应该在一周内解决,争取不做一只鸽子. ...

  2. 【NOIP2017提高A组模拟9.12】Arrays and Palindrome

    [NOIP2017提高A组模拟9.12]Arrays and Palindrome[SPJ] 题目 Description Input Output Sample Input 1 6 Sample O ...

  3. CF 335B - Palindrome 区间DP

    335B - Palindrome 题目: 给出一个字符串(均有小写字母组成),如果有长度为100的回文子串,输出该子串.否则输出最长的回文子串. 分析: 虽然输入串的长度比较长,但是如果存在单个字母 ...

  4. CF&&CC百套计划2 CodeChef December Challenge 2017 Chef and Hamming Distance of arrays

    https://www.codechef.com/DEC17/problems/CHEFHAM #include<cstdio> #include<cstring> #incl ...

  5. CF 1326 D. Prefix-Suffix Palindrome

    D. Prefix-Suffix Palindrome 题意 给一个字符串 s,求一个字符串 t,t 由 s 的某个前缀以及某个后缀拼接而成,且 t 是回文串,长度不能超过 s.输出最长的 t 分析 ...

  6. CF 335B. Palindrome(DP)

    题目链接 挺好玩的一个题,1Y... #include <cstdio> #include <cstring> #include <iostream> using ...

  7. 【CF】7 Beta Round D. Palindrome Degree

    manacher+dp.其实理解manacher就可以解了,大水题,dp就是dp[i]=dp[i>>1]+1如何满足k-palindrome条件. /* 7D */ #include &l ...

  8. 【agc001d】Arrays and Palindrome

    Portal -->agc001D Description 给你一个\(m\)个数的排列\(A\),这个\(A\)中元素的顺序可以随便调换,\(A\)中的元素的和为\(n\),现在要你构造一个数 ...

  9. Agc001_D Arrays and Palindrome

    传送门 题目大意 给定一个元素和为$N$的有$M$个数的序列$A$,请你可以$A$元素排列的顺序,并需要构造一个有$K$个($K$可以自己定)数的数列,使得任意一个长度为$N$的字符串,若满足:前$A ...

  10. AGC001 D - Arrays and Palindrome【构造】

    把回文串的相等关系连一下,发现最后要求的是一笔画问题 注意到奇数长度的中间有一个单独没有连线的,所以a数组至多有两个奇数值 如果没有奇数,那么b在最前面放一个1,然后把a[1]~a[m-1]放上去,这 ...

随机推荐

  1. 剑指Offer的学习笔记(C#篇)-- 二维数组中的查找

    题目描述 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数 ...

  2. MySQL数据库(3)

    外键的变种(三种关系),数据的增删改,单表查询,多表查询 一.外键的变种(三种关系) 本节重点: 如何找出两张表之间的关系 表的三种关系 一.介绍 因为有foreign key的约束,使得两张表形成了 ...

  3. centOS6.5 安装后无法启动无线上网

    查看无线网卡型号:[root@mookee rtl8192se_linux_2.6.0019.1207.2010]# lspci |grep Network03:00.0 Network contro ...

  4. notepad++ 插件大全

    Explorer 资源管理器 Colour Picker 拾色器 SecurePad  加密工具 HTMLTag  NppExport  导出为特殊格式 Simple script  AHKExtLe ...

  5. AJPFX辨析Java中堆内存和栈内存的区别

    Java把内存分成两种,一种叫做栈内存,一种叫做堆内存 在函数中定义的一些基本类型的变量和对象的引用变量都是在函数的栈内存中分配.当在一段代码块中定义一个变量时,java就在栈中为这个变量分配内存空间 ...

  6. JavaScript是什么

    JavaScript是一种解释型语言而不是编译型语言,它往往被认为是一种脚本语言,而不被看作是一种真正的编程语言.也就是说,脚本语言比较简单,它们是非程序员所使用的编程语言. 如果一个程序员对Java ...

  7. tomcat服务器,从前端到后台到跳转

    前端页面: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <tit ...

  8. UNITY_MATRIX_MVP和UnityObjectToClipPos

    在unity5.6以上版本中,shader中的UNITY_MATRIX_MVP将会被UnityObjectToClipPos替代,以后我们在写顶点函数时就是这样的 v2f vert(appdata v ...

  9. Jquery 事件 DOM操作

    常规事件: 把JS的事件  on去掉即可 例如:js    document.getElementById("id").onclinck=function(){} Jquery   ...

  10. jquery.restrictFieldLength.js

    1.参考资料 http://www.cnblogs.com/aarond/archive/2013/08/02/3234042.html 2.使用举例 //字符控制 $(function () { $ ...