I/O密集型 (CPU-bound) 
I/O bound 指的是系统的CPU效能相对硬盘/内存的效能要好很多,此时,系统运作,大部分的状况是 CPU 在等 I/O (硬盘/内存) 的读/写,此时 CPU Loading 不高。
CPU bound 指的是系统的 硬盘/内存 效能 相对 CPU 的效能 要好很多,此时,系统运作,大部分的状况是 CPU Loading 100%,CPU 要读/写 I/O (硬盘/内存),I/O在很短的时间就可以完成,而 CPU 还有许多运算要处理,CPU Loading 很高。

计算密集型 (CPU-bound) 
在多重程序系统中,大部份时间用来做计算、逻辑判断等CPU动作的程序称之CPU bound。例如一个计算圆周率至小数点一千位以下的程序,在执行的过程当中

绝大部份时间用在三角函数和开根号的计算,便是属于CPU bound的程序。
It is because the performance characteristic of most protocol codec implementations is CPU-bound, which is the same with I/O processor threads.

根据以上分析,可以认为通常情况下,大部分程序针对某个特定的性能metric而言
都可分为CPU bound 和 I/O bound两类。
CPU bound的程序一般而言CPU占用率相当高。这可能是因为任务本身不太需要访问I/O设备,也可能是因为程序是多线程实现因此屏蔽掉了等待I/O的时间。
而I/O bound的程序一般在达到性能极限时,CPU占用率仍然较低。这可能是因为任务本身需要大量I/O操作,而pipeline做得不是很好,没有充分利用处理器能力

转自http://blog.chinaunix.net/space.php?uid=13714918&do=blog&id=2875404

进程 vs. 线程


我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。

首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。

如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。

如果用多线程实现Master-Worker,主线程就是Master,其他线程就是Worker。

多进程模式最大的优点就是稳定性高,因为一个子进程崩溃了,不会影响主进程和其他子进程。(当然主进程挂了所有进程就全挂了,但是Master进程只负责分配任务,挂掉的概率低)著名的Apache最早就是采用多进程模式。

多进程模式的缺点是创建进程的代价大,在Unix/Linux系统下,用fork调用还行,在Windows下创建进程开销巨大。另外,操作系统能同时运行的进程数也是有限的,在内存和CPU的限制下,如果有几千个进程同时运行,操作系统连调度都会成问题。

多线程模式通常比多进程快一点,但是也快不到哪去,而且,多线程模式致命的缺点就是任何一个线程挂掉都可能直接造成整个进程崩溃,因为所有线程共享进程的内存。在Windows上,如果一个线程执行的代码出了问题,你经常可以看到这样的提示:“该程序执行了非法操作,即将关闭”,其实往往是某个线程出了问题,但是操作系统会强制结束整个进程。

在Windows下,多线程的效率比多进程要高,所以微软的IIS服务器默认采用多线程模式。由于多线程存在稳定性的问题,IIS的稳定性就不如Apache。为了缓解这个问题,IIS和Apache现在又有多进程+多线程的混合模式,真是把问题越搞越复杂。

计算密集型 vs. IO密集型

是否采用多任务的第二个考虑是任务的类型。我们可以把任务分为计算密集型和IO密集型。

计算密集型任务的特点是要进行大量的计算,消耗CPU资源,比如计算圆周率、对视频进行高清解码等等,全靠CPU的运算能力。这种计算密集型任务虽然也可以用多任务完成,但是任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以,要最高效地利用CPU,计算密集型任务同时进行的数量应当等于CPU的核心数。

计算密集型任务由于主要消耗CPU资源,因此,代码运行效率至关重要。Python这样的脚本语言运行效率很低,完全不适合计算密集型任务。对于计算密集型任务,最好用C语言编写。

第二种任务的类型是IO密集型,涉及到网络、磁盘IO的任务都是IO密集型任务,这类任务的特点是CPU消耗很少,任务的大部分时间都在等待IO操作完成(因为IO的速度远远低于CPU和内存的速度)。对于IO密集型任务,任务越多,CPU效率越高,但也有一个限度。常见的大部分任务都是IO密集型任务,比如Web应用。

IO密集型任务执行期间,99%的时间都花在IO上,花在CPU上的时间很少,因此,用运行速度极快的C语言替换用Python这样运行速度极低的脚本语言,完全无法提升运行效率。对于IO密集型任务,最合适的语言就是开发效率最高(代码量最少)的语言,脚本语言是首选,C语言最差。

总之,计算密集型程序适合C语言多线程,I/O密集型适合脚本语言开发的多线程。

cpu,io密集型计算概念的更多相关文章

  1. IO密集型 计算密集型

    参考:https://www.cnblogs.com/zhangyux/p/6195860.html 参考:廖雪峰 协程 gevent IO密集型任务指的是磁盘IO或者网络IO占主要的任务,计算量很小 ...

  2. Python解释器是单线程应用 IO 密集型 计算密集型 GIL global interpreter lock

    [Python解释器是单线程应用] [任意时刻,仅执行一个线程] 尽管Python解释器中可以运行多个线程,但是在任意给定的时刻只有一个线程会被解释器执行. [GIL锁 保证同时只有一个线程运行] 对 ...

  3. CPU计算密集型和IO密集型

    CPU计算密集型和IO密集型 第一种任务的类型是计算密集型任务,其特点是要进行大量的计算,消耗CPU资源,比如计算圆周率.对视频进行高清解码等等,全靠CPU的运算能力.这种计算密集型任务虽然也可以用多 ...

  4. python网络编程基础(线程与进程、并行与并发、同步与异步、阻塞与非阻塞、CPU密集型与IO密集型)

    python网络编程基础(线程与进程.并行与并发.同步与异步.阻塞与非阻塞.CPU密集型与IO密集型) 目录 线程与进程 并行与并发 同步与异步 阻塞与非阻塞 CPU密集型与IO密集型 线程与进程 进 ...

  5. [Python]IO密集型任务 VS 计算密集型任务

    所谓IO密集型任务,是指磁盘IO.网络IO占主要的任务,计算量很小.比如请求网页.读写文件等.当然我们在Python中可以利用sleep达到IO密集型任务的目的. 所谓计算密集型任务,是指CPU计算占 ...

  6. 计算&IO密集型任务的 优化

    问题原因: 最近由于工作实际需求,需要对某个计算单元的计算方法进行重构.原因是由于这个计算单元的计算耗时较长,单个计算耗时大约在1s-2s之间,而新的需求下,要求在20s内对大约1500个计算单元计算 ...

  7. Python IO密集型任务、计算密集型任务,以及多线程、多进程

    对于IO密集型任务: 直接执行用时:10.0333秒 多线程执行用时:4.0156秒 多进程执行用时:5.0182秒 说明多线程适合IO密集型任务. 对于计算密集型任务 直接执行用时:10.0273秒 ...

  8. Java多线程(二)关于多线程的CPU密集型和IO密集型这件事

    点我跳过黑哥的卑鄙广告行为,进入正文. Java多线程系列更新中~ 正式篇: Java多线程(一) 什么是线程 Java多线程(二)关于多线程的CPU密集型和IO密集型这件事 Java多线程(三)如何 ...

  9. 什么是CPU密集型、IO密集型?

    CPU密集型(CPU-bound) CPU密集型也叫计算密集型,指的是系统的硬盘.内存性能相对CPU要好很多,此时,系统运作大部分的状况是CPU Loading 100%,CPU要读/写I/O(硬盘/ ...

随机推荐

  1. <mvc:default-servlet-handler/>的作用

    优雅REST风格的资源URL不希望带 .html 或 .do 等后缀.由于早期的Spring MVC不能很好地处理静态资源,所以在web.xml中配置DispatcherServlet的请求映射,往往 ...

  2. RedHat Linux服务器安全配置细节

    1.概述 Linux服务器版本:RedHat Linux AS 2.1 对于开放式的操作系统---Linux,系统的安全设定包括系统服务最小化.限制远程存取.隐藏重要资料.修补安全漏洞.采用安全工具以 ...

  3. 【Python】内置函数清单

    Python内置(built-in)函数随着python解释器的运行而创建.在Python的程序中,你可以随时调用这些函数,不需要定义.最常见的内置函数是: print("Hello Wor ...

  4. 【lightoj-1046】Rider(BFS)

    链接:http://www.lightoj.com/volume_showproblem.php?problem=1046 题意: 给m*n的棋盘,数字k代表这个位置上有棋子,并且一步可以连续跳1-k ...

  5. H264提供了哪些帧内预测?

    H.264/AVC 提供了四种帧内预测方式:4x4 亮度块的帧内预测(Intra_4x4).16x16 亮度块的帧内预测(Intra_16x16).8x8 色度块的帧内预测(Intra_chroma) ...

  6. Win7系统64位环境下使用Apache——Apache2.4整合Tomcat与mod_jk

    转载请注明出处:http://blog.csdn.net/dongdong9223/article/details/70398091 本文出自[我是干勾鱼的博客] 之前的几篇文章: Win7系统64位 ...

  7. (五)js数组方法二

    一:数组方法 var arr = []; 1.arr.push()//给数组末尾<添加>元素 2.arr.unshift()//给数组头部<添加>元素 3.arr.shift( ...

  8. 用ofstream/ifstream 读写Unicod的TXT

    使用的平台:vs2013 控制台 from: http://bbs.csdn.net/topics/360229403 xiayuanzhong: ofstream ofs( "test.t ...

  9. HihoCoder 1158 : 质数相关 (最大独立集)

    质数相关 时间限制:2000ms 单点时限:1000ms 内存限制:256MB 描述 两个数a和 b (a<b)被称为质数相关,是指a × p = b,这里p是一个质数.一个集合S被称为质数相关 ...

  10. python之懒惰属性(延迟初始化)

    Python 对象的延迟初始化是指,当它第一次被创建时才进行初始化,或者保存第一次创建的结果,然后每次调用的时候直接返回该结果.延迟初始化主要用于提高性能,避免浪费计算,并减少程序的内存需求. 1. ...