CF984 C. Finite or not?【数论/GCD】
【链接】:CF
【题意】:n组样例,对于每组样例,给你三个数p q b,问你p/q在b进制下是不是一个有限小数,是的话输出Finite,否则输出Infinite。
【分析】:b的过程是对q约分,那么只要b包含q全部的因子即可。考虑1/q,一定是一个小于等于1的数,考虑将小数转化为b进制的过程,每次将小数乘以b然后取整数部分,直到这个小数变成了0,也就是说如果某个小数1/q在b进制下可以被有限表示。
因此。对于在b进制下的小数p/q,只要看看q的质因子是不是都是b的质因子就可以了,显然可以用gcd来搞。每次都用q去除gcd(q,b)。如果最后q能够变成1.那就说明q的质因子都b的质因子。(gcd本质上就是两个数相同质因子中取指数较小的那个,然后全都乘起来)
但不要每次都重新获取q,b的gcd。用上次的结果尝试继续除就好。
【代码】:
#include <bits/stdc++.h>
#define ll long long
#define pb push_back
#define inf 0x3f3f3f3f
#define pll pair<ll,ll>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define rep1(i,a,b) for(int i=a;i>=b;i--)
#define rson rt<<1|1,m+1,r
#define lson rt<<1,l,m
using namespace std;
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
ll p,q,b;
scanf("%lld%lld%lld",&p,&q,&b);
ll g=__gcd(p,q);
p/=g;
q/=g;
if(p==0||q==1){
printf("Finite\n");
continue;
}
while(q!=1&&b!=1)
{
b=__gcd(q,b);
q/=b;
}
if(q==1) printf("Finite\n");
else printf("Infinite\n");
}
}
/*
2
6 12 10
4 3 10
4
1 1 2
9 36 2
4 12 3
3 5 4
*/
CF984 C. Finite or not?【数论/GCD】的更多相关文章
- UVA.12716 GCD XOR (暴力枚举 数论GCD)
UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 ...
- cf C. Finite or not? 数论
You are given several queries. Each query consists of three integers pp, qq and bb. You need to answ ...
- 【cf 483 div2 -C】Finite or not?(数论)
链接:http://codeforces.com/contest/984/problem/C 题意 三个数p, q, b, 求p/q在b进制下小数点后是否是有限位. 思路 题意转化为是否q|p*b^x ...
- CF1025B Weakened Common Divisor【数论/GCD/思维】
#include<cstdio> #include<string> #include<cstdlib> #include<cmath> #include ...
- HDU - 5584 LCM Walk (数论 GCD)
A frog has just learned some number theory, and can't wait to show his ability to his girlfriend. No ...
- HDU 1722 Cake (数论 gcd)(Java版)
Big Number 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1722 ——每天在线,欢迎留言谈论. 题目大意: 给你两个数 n1,n2 . 然后 ...
- 数论----gcd和lcm
gcd即最大公约数,lcm即最小公倍数. 首先给出a×b=gcd×lcm 证明:令gcd(a,b)=k,a=xk,b=yk,则a×b=x*y*k*k,而lcm=x*y*k,所以a*b=gcd*lcm. ...
- hdu 5505(数论-gcd的应用)
GT and numbers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)To ...
- [NOIP2009] $Hankson$ 的趣味题 (数论,gcd)
题目链接 Solution 此题,用到的结论都是比较浅显的,但是,我竟然没想到反过来枚举... 只有50分... 被自己蠢哭... 结论比较浅显: 1.对于两个正整数\(a\),\(b\),设 \(g ...
随机推荐
- 【bzoj2049】[Sdoi2008]Cave 洞穴勘测 LCT
题目描述 辉辉热衷于洞穴勘测.某天,他按照地图来到了一片被标记为JSZX的洞穴群地区.经过初步勘测,辉辉发现这片区域由n个洞穴(分别编号为1到n)以及若干通道组成,并且每条通道连接了恰好两个洞穴.假如 ...
- POJ2774 Long Long Message 【后缀数组lcp】
长长的消息 时间限制: 4000MS 内存限制: 131072K 提交总数: 32393 接受: 13079 案件时间限制: 1000MS 描述 小猫在拜特兰的首府物理专业.最近有一个不幸的消 ...
- 闲话JavaScript与Cookies
使用 Cookies 我们已经知道,在 document 对象中有一个 cookie 属性.但是 Cookie 又是什么?"某些 Web 站点在您的硬盘上用很小的文本文件存储了一些信息,这些 ...
- 模拟实现jdk动态代理
实现步骤 1.生成代理类的源代码 2.将源代码保存到磁盘 3.使用JavaCompiler编译源代码生成.class字节码文件 4.使用JavaCompiler编译源代码生成.class字节码文件 5 ...
- IOS 上传项目到github 终端操作
1.创建github账号 2.创建秘钥 3.Github配置秘钥 4.上传文件 复制保存网址 终端操作,如果没有ssh,自行安装 GitHub配置秘钥 克隆github上创建的项目 将自己的本地项目, ...
- Python 进阶学习笔记
把函数作为参数 import math def add(x, y, f): return f(x) + f(y) print add(, , math.sqrt) map(f, list) 函数 接收 ...
- jsp中的路径问题
在学jsp的时候我每次都遇到路径的问题,每次都不能够说100%的把这搞定,这让我很烦恼,今天下午花了点时间来把路径问题整理了下. 一:首先我们在加载项目(我的项目名称是FinalExam)是的路径是h ...
- org.springframework.web.HttpRequestMethodNotSupportedException: Request method 'GET' not supported解决!
org.springframework.web.HttpRequestMethodNotSupportedException: Request method 'GET' not supported解决 ...
- POJ 2456 Aggressive cows---二分搜索法
///3.最大化最小值 /** POJ 2456 Aggressive cows Q:一排牛舍有N (2 <= N <= 100,000) 个,位置为x1,...,xN (0 <= ...
- Codeforces Round #299 Div2 解题报告
这场比赛并没有打现场,昨天晚上做了ABCD四道题,今天做掉了E题 以前还没有过切完一场比赛的所有题呢~爽~ A. Tavas and Nafas Today Tavas got his test ...