layout: post

title: 训练指南 UVALive - 4043(二分图匹配 + KM算法)

author: "luowentaoaa"

catalog: true

mathjax: true

tags:

- 二分图匹配

- 图论

- 训练指南


Ants

UVALive - 4043

题意

给你n个白点和n个黑点的平面坐标,要求用n条不相交的线连起来,每条线段连一个白点和黑点,每个点连一条线,也就是匹配。让你输出第i个白点所对应的黑点。

思路

二分图完美匹配问题。但是题目中有个线段不相交,怎么办?其实这个最佳完美匹配就是答案了。最佳完美匹配是权值和最大,那么我们就把两两点线段的权值搞成他们距离的负数即可。这样就不可能有相交的了。为什么?因为假设有相交,a1-b2,a2-b1,而dist(a1,b1)+dist(a2,b2) 肯定比前面交叉的小,画个四边形就很清楚了,那么负数就是大了,也就是说交叉的在我们设计的负权那里是小的,所以就是最佳,也就是不可能有交叉的。

这样分析清楚了之后,就只要直接套用KM就OK了!

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=998244353;
const int maxn=1e2+50;
const double inf=999999999999999.;
const double eps=1e-5;
struct node{
double x,y;
}white[150],black[150];
double g[150][150];
int nx,ny;
bool visx[maxn],visy[maxn];
double slack[maxn];
int linker[maxn];
double lx[maxn],ly[maxn];
bool dfs(int x){
visx[x]=true;
for(int y=0;y<ny;y++){
if(visy[y])continue;
double tmp=lx[x]+ly[y]-g[x][y];
if(fabs(tmp)<eps){
visy[y]=true;
if(linker[y]==-1||dfs(linker[y])){
linker[y]=x;return true;
}
}
else if(slack[y]>tmp)slack[y]=tmp;
}
return false;
}
int KM(){
memset(linker,-1,sizeof(linker));
memset(ly,0,sizeof(ly));
for(int i=0;i<nx;i++){
lx[i]=-inf;
for(int j=0;j<ny;j++){
if(g[i][j]>lx[i])lx[i]=g[i][j];
}
}
for(int x=0;x<nx;x++){
for(int i=0;i<ny;i++)slack[i]=inf;
while(true){
memset(visx,false,sizeof(visx));
memset(visy,false,sizeof(visy));
if(dfs(x))break;
double d=inf;
for(int i=0;i<ny;i++)
if(!visy[i]&&d>slack[i])d=slack[i];
for(int i=0;i<nx;i++)
if(visx[i])lx[i]-=d;
for(int i=0;i<ny;i++)
if(visy[i])ly[i]+=d;
else slack[i]-=d;
}
}
int res=0;
for(int i=0;i<ny;i++)
if(linker[i]!=-1)res+=g[linker[i]][i];
return res;
} double dis(node a,node b){
return double(sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)));
}
int n;
int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie(0);
std::cout.tie(0);
int first=0;
while(cin>>n){
nx=ny=n;
if(first)cout<<endl;
first=1;
for(int i=0;i<n;i++){
cin>>white[i].x>>white[i].y;
}
for(int i=0;i<n;i++){
cin>>black[i].x>>black[i].y;
}
for(int i=0;i<n;i++)for(int j=0;j<n;j++)g[i][j]=-dis(black[i],white[j]);
KM();
for(int i=0;i<n;i++)cout<<linker[i]+1<<endl;
}
return 0;
}

训练指南 UVALive - 4043(二分图匹配 + KM算法)的更多相关文章

  1. 牛客多校第五场 E room 二分图匹配 KM算法模板

    链接:https://www.nowcoder.com/acm/contest/143/E来源:牛客网 Nowcoder University has 4n students and n dormit ...

  2. 二分图匹配--KM算法

    Kuhn-Munkres算法 KM算法,求完备匹配下的最大权匹配,时间复杂度O(\(n^3\)) 所谓的完备匹配就是在二部图中,x点集中的所有点都有对应的匹配 且 y点集中所有的点都有对应的匹配 ,则 ...

  3. 训练指南 UVALive - 3523 (双联通分量 + 二分图染色)

    layout: post title: 训练指南 UVALive - 3523 (双联通分量 + 二分图染色) author: "luowentaoaa" catalog: tru ...

  4. 二分图最大权匹配——KM算法

    前言 这东西虽然我早就学过了,但是最近才发现我以前学的是假的,心中感慨万千(雾),故作此篇. 简介 带权二分图:每条边都有权值的二分图 最大权匹配:使所选边权和最大的匹配 KM算法,全称Kuhn-Mu ...

  5. 训练指南 UVALive - 3126(DAG最小路径覆盖)

    layout: post title: 训练指南 UVALive - 3126(DAG最小路径覆盖) author: "luowentaoaa" catalog: true mat ...

  6. 训练指南 UVALive - 3415(最大点独立集)

    layout: post title: 训练指南 UVALive - 3415(最大点独立集) author: "luowentaoaa" catalog: true mathja ...

  7. 训练指南 UVALive - 3989(稳定婚姻问题)

    ayout: post title: 训练指南 UVALive - 3989(稳定婚姻问题) author: "luowentaoaa" catalog: true mathjax ...

  8. 【HDU 2255】奔小康赚大钱 (最佳二分匹配KM算法)

    奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  9. 训练指南 UVALive - 4080(最短路Dijkstra + 边修改 + 最短路树)

    layout: post title: 训练指南 UVALive - 4080(最短路Dijkstra + 边修改 + 最短路树) author: "luowentaoaa" ca ...

随机推荐

  1. DPDK 分析

    DPDK 分析 来源 https://www.cnblogs.com/bakari/p/8404650.html 高性能网络技术 随着云计算产业的异军突起,网络技术的不断创新,越来越多的网络设备基础架 ...

  2. 左侧导航条+中间显示内容+右侧菜单配置,Bootstrap+AdminLTE+Jquery

    1.最近做个导航页面,找了一大堆UI,最终选了AdminLTE,这个UI也是以bootstrap为基础,简单实用,中间内容用jquery的load加载,简单暴力,非常适合快速开发. 2.效果图如下: ...

  3. MySQL触发器写法

    触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/dele ...

  4. BZOJ3289 Mato的文件管理 【莫队 + 树状数组】

    3289: Mato的文件管理 Time Limit: 40 Sec  Memory Limit: 128 MB Submit: 3964  Solved: 1613 [Submit][Status] ...

  5. 非阻塞式JavaScript脚本及延伸知识

    JavaScript 倾向于阻塞浏览器某些处理过程,如HTTP 请求和界面刷新,这是开发者面临的最显著的性能问题.保持JavaScript文件短小,并限制HTTP请求的数量,只是创建反应迅速的网页应用 ...

  6. taotao购物车2 解决购物车本地cookie和服务器redis不同步的问题

    下面的思路逻辑一定要理清楚,比较绕 思路; 前面已经实现了在cookie本地维护购物车的功能, 这次加入和服务器同步功能, 因为 购物车 操作比较频繁,所以,后台服务器 用redis存储用户的购物车信 ...

  7. SICAU-OJ: 第k小

    第k小 题意: 给出一个长度不超过5000的字符串,然后让你找出第K小的字串(1<=K<=5).重复的串大小相等. 题解: 这里我们知道某些串的前缀是肯定小于等于其本身的. 那么长度为5的 ...

  8. poj 2104 (划分树模板)

    Description You are working for Macrohard company in data structures department. After failing your ...

  9. ubunut14.04 mentohust配置

      1.设置网卡eth0的IP地址和子网掩码 sudo ifconfig eth0 10.162.32.94 netmask 255.0.0.0 将IP地址改为:10.162.32.94,子网掩码改为 ...

  10. Optimize Prime Sieve

    /// A heavily optimized sieve #include <cstdio> #include <cstring> #include <algorith ...