训练指南 UVALive - 4043(二分图匹配 + KM算法)
layout: post
title: 训练指南 UVALive - 4043(二分图匹配 + KM算法)
author: "luowentaoaa"
catalog: true
mathjax: true
tags:
- 二分图匹配
- 图论
- 训练指南
Ants
题意
给你n个白点和n个黑点的平面坐标,要求用n条不相交的线连起来,每条线段连一个白点和黑点,每个点连一条线,也就是匹配。让你输出第i个白点所对应的黑点。
思路
二分图完美匹配问题。但是题目中有个线段不相交,怎么办?其实这个最佳完美匹配就是答案了。最佳完美匹配是权值和最大,那么我们就把两两点线段的权值搞成他们距离的负数即可。这样就不可能有相交的了。为什么?因为假设有相交,a1-b2,a2-b1,而dist(a1,b1)+dist(a2,b2) 肯定比前面交叉的小,画个四边形就很清楚了,那么负数就是大了,也就是说交叉的在我们设计的负权那里是小的,所以就是最佳,也就是不可能有交叉的。
这样分析清楚了之后,就只要直接套用KM就OK了!
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=998244353;
const int maxn=1e2+50;
const double inf=999999999999999.;
const double eps=1e-5;
struct node{
double x,y;
}white[150],black[150];
double g[150][150];
int nx,ny;
bool visx[maxn],visy[maxn];
double slack[maxn];
int linker[maxn];
double lx[maxn],ly[maxn];
bool dfs(int x){
visx[x]=true;
for(int y=0;y<ny;y++){
if(visy[y])continue;
double tmp=lx[x]+ly[y]-g[x][y];
if(fabs(tmp)<eps){
visy[y]=true;
if(linker[y]==-1||dfs(linker[y])){
linker[y]=x;return true;
}
}
else if(slack[y]>tmp)slack[y]=tmp;
}
return false;
}
int KM(){
memset(linker,-1,sizeof(linker));
memset(ly,0,sizeof(ly));
for(int i=0;i<nx;i++){
lx[i]=-inf;
for(int j=0;j<ny;j++){
if(g[i][j]>lx[i])lx[i]=g[i][j];
}
}
for(int x=0;x<nx;x++){
for(int i=0;i<ny;i++)slack[i]=inf;
while(true){
memset(visx,false,sizeof(visx));
memset(visy,false,sizeof(visy));
if(dfs(x))break;
double d=inf;
for(int i=0;i<ny;i++)
if(!visy[i]&&d>slack[i])d=slack[i];
for(int i=0;i<nx;i++)
if(visx[i])lx[i]-=d;
for(int i=0;i<ny;i++)
if(visy[i])ly[i]+=d;
else slack[i]-=d;
}
}
int res=0;
for(int i=0;i<ny;i++)
if(linker[i]!=-1)res+=g[linker[i]][i];
return res;
}
double dis(node a,node b){
return double(sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)));
}
int n;
int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie(0);
std::cout.tie(0);
int first=0;
while(cin>>n){
nx=ny=n;
if(first)cout<<endl;
first=1;
for(int i=0;i<n;i++){
cin>>white[i].x>>white[i].y;
}
for(int i=0;i<n;i++){
cin>>black[i].x>>black[i].y;
}
for(int i=0;i<n;i++)for(int j=0;j<n;j++)g[i][j]=-dis(black[i],white[j]);
KM();
for(int i=0;i<n;i++)cout<<linker[i]+1<<endl;
}
return 0;
}
训练指南 UVALive - 4043(二分图匹配 + KM算法)的更多相关文章
- 牛客多校第五场 E room 二分图匹配 KM算法模板
链接:https://www.nowcoder.com/acm/contest/143/E来源:牛客网 Nowcoder University has 4n students and n dormit ...
- 二分图匹配--KM算法
Kuhn-Munkres算法 KM算法,求完备匹配下的最大权匹配,时间复杂度O(\(n^3\)) 所谓的完备匹配就是在二部图中,x点集中的所有点都有对应的匹配 且 y点集中所有的点都有对应的匹配 ,则 ...
- 训练指南 UVALive - 3523 (双联通分量 + 二分图染色)
layout: post title: 训练指南 UVALive - 3523 (双联通分量 + 二分图染色) author: "luowentaoaa" catalog: tru ...
- 二分图最大权匹配——KM算法
前言 这东西虽然我早就学过了,但是最近才发现我以前学的是假的,心中感慨万千(雾),故作此篇. 简介 带权二分图:每条边都有权值的二分图 最大权匹配:使所选边权和最大的匹配 KM算法,全称Kuhn-Mu ...
- 训练指南 UVALive - 3126(DAG最小路径覆盖)
layout: post title: 训练指南 UVALive - 3126(DAG最小路径覆盖) author: "luowentaoaa" catalog: true mat ...
- 训练指南 UVALive - 3415(最大点独立集)
layout: post title: 训练指南 UVALive - 3415(最大点独立集) author: "luowentaoaa" catalog: true mathja ...
- 训练指南 UVALive - 3989(稳定婚姻问题)
ayout: post title: 训练指南 UVALive - 3989(稳定婚姻问题) author: "luowentaoaa" catalog: true mathjax ...
- 【HDU 2255】奔小康赚大钱 (最佳二分匹配KM算法)
奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Subm ...
- 训练指南 UVALive - 4080(最短路Dijkstra + 边修改 + 最短路树)
layout: post title: 训练指南 UVALive - 4080(最短路Dijkstra + 边修改 + 最短路树) author: "luowentaoaa" ca ...
随机推荐
- DPDK 分析
DPDK 分析 来源 https://www.cnblogs.com/bakari/p/8404650.html 高性能网络技术 随着云计算产业的异军突起,网络技术的不断创新,越来越多的网络设备基础架 ...
- 左侧导航条+中间显示内容+右侧菜单配置,Bootstrap+AdminLTE+Jquery
1.最近做个导航页面,找了一大堆UI,最终选了AdminLTE,这个UI也是以bootstrap为基础,简单实用,中间内容用jquery的load加载,简单暴力,非常适合快速开发. 2.效果图如下: ...
- MySQL触发器写法
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/dele ...
- BZOJ3289 Mato的文件管理 【莫队 + 树状数组】
3289: Mato的文件管理 Time Limit: 40 Sec Memory Limit: 128 MB Submit: 3964 Solved: 1613 [Submit][Status] ...
- 非阻塞式JavaScript脚本及延伸知识
JavaScript 倾向于阻塞浏览器某些处理过程,如HTTP 请求和界面刷新,这是开发者面临的最显著的性能问题.保持JavaScript文件短小,并限制HTTP请求的数量,只是创建反应迅速的网页应用 ...
- taotao购物车2 解决购物车本地cookie和服务器redis不同步的问题
下面的思路逻辑一定要理清楚,比较绕 思路; 前面已经实现了在cookie本地维护购物车的功能, 这次加入和服务器同步功能, 因为 购物车 操作比较频繁,所以,后台服务器 用redis存储用户的购物车信 ...
- SICAU-OJ: 第k小
第k小 题意: 给出一个长度不超过5000的字符串,然后让你找出第K小的字串(1<=K<=5).重复的串大小相等. 题解: 这里我们知道某些串的前缀是肯定小于等于其本身的. 那么长度为5的 ...
- poj 2104 (划分树模板)
Description You are working for Macrohard company in data structures department. After failing your ...
- ubunut14.04 mentohust配置
1.设置网卡eth0的IP地址和子网掩码 sudo ifconfig eth0 10.162.32.94 netmask 255.0.0.0 将IP地址改为:10.162.32.94,子网掩码改为 ...
- Optimize Prime Sieve
/// A heavily optimized sieve #include <cstdio> #include <cstring> #include <algorith ...