欧拉函数:

对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。

对于一个正整数N的素数幂分解N=P1^q1*P2^q2*...*Pn^qn.

Euler函数表达通式:euler(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…(1-1/pn),或者φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn),

其中p1,p2……pn为x的所有素因数,x是不为0的整数。

euler(1)=1(唯一和1互质的数就是1本身)。 
欧拉公式的延伸:

1.小于或等于n的数中,与n互质的数的总和为:φ(n) * n / 2  (n>1)。

2.n=∑d|nφ(d),即n的因数(包括1和它自己)的欧拉函数之和等于n。

代码:

ll euler(ll n){                                   
    ll ans=n;
    for(int i=;i*i<=n;i++){                     //这里i*i只是为了减少运算次数,直接i<=n也没错,
        if(n%i==){                              //因为只有素因子才会加入公式运算。仔细想一下可以明白i*i的用意。
            ans=ans/i*(i-);
            while(n%i==)
                n/=i;                            //去掉倍数
        }
    }
    if(n>)
        ans=ans/n*(n-);
    return ans;
}

举个例子:10

10的质因子为1,2,5;10的欧拉函数是1,3,7,9;i=2;2*2<10;10%2==0;ans=10/2*(2-1)=5;n=10/2=5;

i=3;3*3<10;10%3!=0跳出循环,执行下面的。此时n=5>1;ans=5/5*(5-1)=4;

欧拉函数就是通过质因子找到少于或等于n的数中与n互质的数的数目。具体公式怎么得出来的我也不会,要找本数论好好看看了。

自己再好好想想。看了两三天了,终于知道什么是欧拉函数了

POJ2407

                                                                                 Relatives
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 14285   Accepted: 7133

Description

Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there are no integers x > 1, y > 0, z > 0 such that a = xy and b = xz.

Input

There are several test cases. For each test case, standard input contains a line with n <= 1,000,000,000. A line containing 0 follows the last case.

Output

For each test case there should be single line of output answering the question posed above.

Sample Input

7
12
0

Sample Output

6
4 代码:
#include<cstdio>
#include<iostream>
using namespace std;
typedef long long ll;
ll euler(ll n){
ll ans=n;
for(int i=;i*i<=n;i++){
if(n%i==){
ans=ans/i*(i-);
while(n%i==)
n/=i;
}
}
if(n>)
ans=ans/n*(n-);
return ans;
}
int main(){
ll n;
while(~scanf("%lld",&n)){
if(n==)break;
euler(n);
printf("%lld\n",euler(n));
}
return ;
}

提交n次都是错,原因在于提交的时候没有看清类型,G++才对,GCC交了5次。。。
智障。。。

POJ 2407.Relatives-欧拉函数O(sqrt(n))的更多相关文章

  1. POJ 2407 Relatives(欧拉函数)

    题目链接 题意 : 求小于等于n中与n互质的数的个数. 思路 : 看数学的时候有一部分是将欧拉函数的,虽然我没怎么看懂,但是模板我记得了,所以直接套了一下模板. 这里是欧拉函数的简介. #includ ...

  2. POJ 2407 Relatives 欧拉函数题解

    版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...

  3. 欧拉函数O(sqrt(n))与欧拉线性筛素数O(n)总结

    欧拉函数: 对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目. POJ 2407.Relatives-欧拉函数 代码O(sqrt(n)): ll euler(ll n){ ll ans=n; ...

  4. POJ 2480 (约数+欧拉函数)

    题目链接: http://poj.org/problem?id=2480 题目大意:求Σgcd(i,n). 解题思路: 如果i与n互质,gcd(i,n)=1,且总和=欧拉函数phi(n). 如果i与n ...

  5. POJ2407–Relatives(欧拉函数)

    题目大意 给定一个正整数n,要求你求出所有小于n的正整数当中与n互质的数的个数 题解 欧拉函数模板题~~~因为n过大~~~所以直接用公式求 代码: #include<iostream> # ...

  6. Poj 2478-Farey Sequence 欧拉函数,素数,线性筛

    Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14291   Accepted: 5647 D ...

  7. poj 2480 (欧拉函数应用)

    点击打开链接 //求SUM(gcd(i,n), 1<=i<=n) /* g(n)=gcd(i,n),根据积性定义g(mn)=g(m)*g(n)(gcd(m,n)==1) 所以gcd(i,n ...

  8. poj2407 Relatives 欧拉函数基本应用

    题意很简单 就是欧拉函数的定义: 欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n) .题目求的就是φ(n) 根据 通式:φ(x)=x*(1-1/p1)*(1-1/ ...

  9. poj 2773 利用欧拉函数求互质数

    题意:找到与n互质的第 k个数 开始一看n是1e6 敲了个暴力结果tle了,后来发现k达到了 1e8 所以需要用到欧拉函数. 我们设小于n的 ,与n互质的数为  (a1,a2,a3.......a(p ...

  10. poj 2154 Color 欧拉函数优化的ploya计数

    枚举位移肯定超时,对于一个位移i.我们须要的是它的循环个数,也就是gcd(i,n),gcd(i,n)个数肯定不会非常多,由于等价于n的约数的个数. 所以我们枚举n的约数.对于一个约数k,也就是循环个数 ...

随机推荐

  1. [剑指Offer] 34.第一个只出现一次的数

    题目描述 在一个字符串(1<=字符串长度<=10000,全部由大写字母组成)中找到第一个只出现一次的字符,并返回它的位置 [思路]当一个字符第一次出现的位置和它最后一次出现的位置相同,那么 ...

  2. DELPHI控件属性事件说明

    常用DELPHI控件属性事件设置说明 常用DELPHI控件属性设置说明目录TForm Class TPanel组件 TToolBar Class TToolButton Class TTimer Cl ...

  3. [codeforces] 17E Palisection

    原题 题目要求相交的回文串对数,这显然非常难,但是要有一种正难则反的心态,求不出来相交的,求出来不相交的不就好了! 对于每以位置i结尾的字符串,在他后面与他不相交的就是以这个位置为结尾的个数和以这个位 ...

  4. 【POJ 3169 Layout】

    Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 12565Accepted: 6043 Description Like every ...

  5. 【BZOJ 3195 】[Jxoi2012]奇怪的道路 装压dp

    受惯性思维的影响自动把二进制状态认为是连与不连......... 我们这里二进制状态表示的是奇偶,这样的话我们f[i][j][k]表示的就是前i个城市用了j个边他前k个城市的奇偶状态,然后想想怎么转移 ...

  6. git clone 出错 fatal: pack has bad object at offset 26060927: inflate returned -3

    $ git clone http://xxx.xxx.cn/liyafei/developer.gitCloning into 'developer'...remote: Counting objec ...

  7. i=i+1与i+=1的区别及效率(Java)

    原博客地址 在做个java优化的PPT时,看到了i=i+1与i+=1的区别,在这之前还真没想到那么细. 1.x=x+1,x+=1及x++的效率哪个最高?为什么? x=x+1最低,因为它的执行如下. ( ...

  8. event loop 小记

    水平不够,只能整理一下知乎大神的回答,勉强度日这样子 在一个事件循环里,会有两个主要的队列:task queue 和 micro-task quene. 其中 task 包括: script(整体代码 ...

  9. API教程

    www.yuanjiaocheng.net http://www.yuanjiaocheng.net/webapi/test-webapi.html

  10. 有关eclipse的内存溢出问题

    一:前言 最近在做的项目在启动tomcat时就报“内存溢出的错误”,其实也不是自己第一次遇到,但是每次都是在网上查询后敲进去,所以这次我觉得自己记载下来吧. 二:内容 我自己的配置大小,这里的配置位置 ...