题目戳这里

这道题目纯粹是考思维。

若\(2N \le M\),由于答案肯定是\(s,s+d,\dots,s+(N-1)d\),我们任意枚举两个数\(a,b\),不妨设\(b\)在数列中出现在\(a\)后面\(k\)位,设\(g = b-a\),则\(g\)这个差在所有数出现刚好\(N-K\)次。我们任取个\(g\),用二分或哈希求个差出现次数,就可以得知\(k\)了,然后\(d = gk^{-1}\)。在检验数列中有\(a\)的公差为\(d\)的等差数列是否存在即可。

若\(2N > M\),我们考虑这些数的补集即可,这样就可以求出\(d\)了。

然后为什么\(2N > M\)不能用第一种情况来做呢?因为\(kd\)这个差不一定出现\(N-k\)次。因为假设我枚举到的差是\((N-1)d\),那么\(s+(2N-2)d\)这个数有可能在模\(M\)意义下是在数列中的,但是这个数字又是不合法的。

程序实现还有一些细节,可以参考一下代码。

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
using namespace std; typedef long long ll;
const int maxn = 100010;
int M,N,A[maxn],B[maxn],ans1,ans2; inline int gi()
{
char ch; int ret = 0,f = 1;
do ch = getchar(); while (!(ch >= '0'&&ch <= '9')&&ch != '-');
if (ch == '-') f = -1,ch = getchar();
do ret = ret*10+ch-'0',ch = getchar(); while (ch >= '0'&&ch <= '9');
return ret*f;
} inline ll qsm(ll a,int b)
{
ll ret = 1;
for (;b;b >>= 1,(a *= a) %= M) if (b&1) (ret *= a) %= M;
return ret;
} inline bool find(int *a,int n,int x) { return a[lower_bound(a+1,a+n+1,x)-a] == x; } inline void solve(int *a,int n)
{
if (n == 1) { ans1 = a[1],ans2 = 1; return; }
int tmp = a[2]-a[1],cnt = 0,tot = 1;
for (int i = 1;i <= n;++i) cnt += find(a,n,(a[i]+tmp)%M);
ans2 = qsm(n-cnt,M-2)*tmp%M;
for (int now = a[1],nx;;now = nx,++tot)
{
nx = now+ans2; if (nx >= M) nx -= M;
if (!find(a,n,nx)) break;
}
for (int now = a[1],nx;;now = nx,++tot)
{
ans1 = now; nx = now-ans2; if (nx < 0) nx += M;
if (!find(a,n,nx)) break;
}
if (tot != n) ans1 = -1;
} int main()
{
freopen("763C.in","r",stdin);
freopen("763C.out","w",stdout);
M = gi(); N = gi();
for (int i = 1;i <= N;++i) A[i] = gi();
sort(A+1,A+N+1);
if (N == 1||N == M) printf("%d 1\n",A[1]);
else
{
if (2*N <= M) solve(A,N);
else
{
int n = 0;
for (int i = 0;i < M;++i) if (!find(A,N,i)) B[++n] = i;
solve(B,n);
if (ans1 != -1) { ans1 += (ll)n*ans2%M; if (ans1 >= M) ans1 -= M; }
}
if (ans1 == -1) puts("-1");
else printf("%d %d\n",ans1,ans2);
}
fclose(stdin); fclose(stdout);
return 0;
}

CF763C Timofey and Remoduling的更多相关文章

  1. [CodeForces-763C]Timofey and remoduling

    题目大意: 告诉你一个长度为n的等差数列在模m意义下的乱序值(互不相等),问是否真的存在满足条件的等差数列,并尝试构造任意一个这样的数列. 思路: 首先我们可以有一个结论: 两个等差数列相等,当且仅当 ...

  2. 763A - Timofey and a tree

    A. Timofey and a tree time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  3. Codeforces Round #395 (Div. 2) D. Timofey and rectangles

    地址:http://codeforces.com/contest/764/problem/D 题目: D. Timofey and rectangles time limit per test 2 s ...

  4. Codeforces Round #395 (Div. 2) C. Timofey and a tree

    地址:http://codeforces.com/contest/764/problem/C 题目: C. Timofey and a tree time limit per test 2 secon ...

  5. Codeforces Round #395 (Div. 2)B. Timofey and cubes

    地址:http://codeforces.com/contest/764/problem/B 题目: B. Timofey and cubes time limit per test 1 second ...

  6. Codeforces 763A. Timofey and a tree

    A. Timofey and a tree 题意:给一棵树,要求判断是否存在一个点,删除这个点后,所有连通块内颜色一样.$N,C \le 10^5$ 想法:这个叫换根吧.先求出一个点合法即其儿子的子树 ...

  7. Codeforces_764_C. Timofey and a tree_(并查集)(dfs)

    C. Timofey and a tree time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  8. 【codeforces 764B】Timofey and cubes

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  9. 【codeforces 764C】Timofey and a tree

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

随机推荐

  1. Java源码解析——集合框架(五)——HashMap源码分析

    HashMap源码分析 HashMap的底层实现是面试中问到最多的,其原理也更加复杂,涉及的知识也越多,在项目中的使用也最多.因此清晰分析出其底层源码对于深刻理解其实现有重要的意义,jdk1.8之后其 ...

  2. 查询表名里含有Bill的表有哪些

    Select Name from Master.dbo.sysobjects where xtype='u' and Name like '%Bill%' order by name

  3. Redis的RDB与AOF介绍(Redis DateBase与Append Only File)

    RedisRDB介绍(Redis DateBase) 在指定的时间间隔内将内存中的数据集快照写入磁盘,也就是行话讲的Snapshot快照,它恢复时是将快照文件直接读到内存里 一.是什么? Redis会 ...

  4. Kubernetes-运维指南

    Node隔离与恢复 cat unschedule_node.yaml apiVersion: kind: Node metadata: name: k8s-node-1 labels: kuberne ...

  5. (数据科学学习手册28)SQL server 2012中的查询语句汇总

    一.简介 数据库管理系统(DBMS)最重要的功能就是提供数据查询,即用户根据实际需求对数据进行筛选,并以特定形式进行显示.在Microsoft SQL Serve 2012 中,可以使用通用的SELE ...

  6. 在WPF中自定义控件(3) CustomControl (上)

    原文:在WPF中自定义控件(3) CustomControl (上) 在WPF中自定义控件(3) CustomControl (上)                              周银辉 ...

  7. guacamole实现上传下载

    目录 1. 源码解读 2. 上传下载的核心代码 分析的入手点,查看websocket连接的frame 看到首先服务端向客户端发送了filesystem请求,紧接着浏览器向服务端发送了get请求,并且后 ...

  8. Datetime与Datetime2的区别

    Datetime:        时间格式,对应于数据库中的DateTime类型,对应于.NET里面的System. DateTime类型.DateTime支持日期从1753年1月1日到9999年12 ...

  9. ArcGIS Server远程处理服务器(环境设置)

    当使用ArcGIS Server做远程处理服务器执行影像处理操作时,提示ERROR 999999通用错误代码,如下: Start Time: Mon Jul 03 13:49:06 2017Distr ...

  10. MySQL☞聚合函数/分组函数

    分组函数(聚合函数) 1.count(*/列名): a.*:求出该数据的总条数 select  count(*)  from 表名 b.列名:求出该列中列名不为null的总条数 select  cou ...