“unexpected, right?”大概可以翻译成“没想到吧!”

题意:给两个序列$w_{1\cdots n}$和$v_{1\cdots n}$,你可以多次删除$w$的子串$w_{l\cdots r}$并获得$v_{r-l+1}$分,被删除的$w_{l\cdots r}$要满足:对$\forall i\in[l,r-1]$有$|w_i-w_{i+1}|=1$且对$\forall i\in[l+1,r-1]$有$2w_i-w_{i-1}-w_{i+1}\geq0$,问最多获得多少分

说白了就是只能删(连续上升的/连续下降的/先连续上升后连续下降的)

设$f_{i,j}$表示删完$w_{i\cdots j}$的最大分数,$g_{i,j,0}$表示把$w_{i\cdots j}$删至连续上升的最大分数,$g_{i,j,1}$表示把$w_{i\cdots j}$删至连续下降的最大分数

$g_{i,j,0}=\max\left\{[w_{j-1}+1=w_j]g_{i,j-1,0},\mathop\max\limits_{k=i}^{j-2}\left\{[w_k+1=w_j](g_{i,k,0}+f_{k+1,j-1})\right\}\right\}$(可以直接在$w_{i\cdots j-1}$后加上$w_j$,也可以从中间选一个位置$k$,把$w_{k+1\cdots j-1}$删完,再接上$w_j$)

$g_{i,j,1}=\max\left\{[w_{j-1}-1=w_j]g_{i,j-1,1},\mathop\max\limits_{k=i}^{j-2}\left\{[w_k-1=w_j](g_{i,k,1}+f_{k+1,j-1})\right\}\right\}$(同理)

$f_{i,j}=\max\left\{\begin{matrix}[1\leq w_j-w_i+1\leq n](g_{i,j,0}+v_{w_j-w_i+1})\\ [1\leq w_i-w_j+1\leq n](g_{i,j,1}+v_{w_i-w_j+1})\\\mathop\max\limits_{k=i}^{j-1}\left\{f_{i,k}+f_{k+1,j}\right\}\\\mathop\max\limits_{k=i+1}^{j-1}\left\{[1\leq2w_k-w_i-w_j+1\leq n]g_{i,k,0}+g_{k,j,1}+v_{2w_k-w_i-w_j+1}\right\}\end{matrix}\right\}$(可以先删成连续上升或连续下降再直接删除,也可以先删$w_{i\cdots k}$再删$w_{k+1\cdots j}$,还可以先删成上升下降再整段删除)

最后再DP求出最大的$[i,j]$互不相交的$f_{i,j}$之和即可

#include<stdio.h>
const int inf=100000000;
int v[410],w[410],f[410][410],g[410][410][2],ans[410];
void max(int&a,int b){
	if(a<b)a=b;
}
int main(){
	int n,i,j,k;
	scanf("%d",&n);
	for(i=1;i<=n;i++)scanf("%d",v+i);
	for(i=1;i<=n;i++)scanf("%d",w+i);
	for(i=1;i<=n;i++){
		for(j=1;j<=n;j++)f[i][j]=g[i][j][0]=g[i][j][1]=-inf;
	}
	for(i=n;i>0;i--){
		f[i][i]=v[1];
		g[i][i][0]=g[i][i][1]=0;
		for(j=i+1;j<=n;j++){
			for(k=i;k<j-1;k++){
				if(w[k]+1==w[j])max(g[i][j][0],g[i][k][0]+f[k+1][j-1]);
			}
			if(w[j-1]+1==w[j])max(g[i][j][0],g[i][j-1][0]);
		}
		for(j=i+1;j<=n;j++){
			for(k=i;k<j-1;k++){
				if(w[k]-1==w[j])max(g[i][j][1],g[i][k][1]+f[k+1][j-1]);
			}
			if(w[j-1]-1==w[j])max(g[i][j][1],g[i][j-1][1]);
		}
		for(j=i;j<=n;j++){
			if(w[j]-w[i]+1>0&&w[j]-w[i]+1<=n)max(f[i][j],g[i][j][0]+v[w[j]-w[i]+1]);
			if(w[i]-w[j]+1>0&&w[i]-w[j]+1<=n)max(f[i][j],g[i][j][1]+v[w[i]-w[j]+1]);
			for(k=i;k<j;k++)max(f[i][j],f[i][k]+f[k+1][j]);
			for(k=i+1;k<j;k++){
				if(2*w[k]-w[i]-w[j]+1>0&&2*w[k]-w[i]-w[j]+1<=n)max(f[i][j],g[i][k][0]+g[k][j][1]+v[2*w[k]-w[i]-w[j]+1]);
			}
		}
	}
	for(i=1;i<=n;i++){
		ans[i]=ans[i-1];
		for(j=0;j<i;j++)max(ans[i],ans[j]+f[j+1][i]);
	}
	printf("%d",ans[n]);
}

[CF392E]Deleting Substrings的更多相关文章

  1. Codeforces.392E.Deleting Substrings(区间DP)

    题目链接 \(Description\) \(Solution\) 合法的子序列只有三种情况:递增,递减,前半部分递增然后一直递减(下去了就不会再上去了)(当然还要都满足\(|a_{i+1}-a_i| ...

  2. CCPC2018-湖南全国邀请赛 G String Transformation

    G.String Transformation 题目描述 Bobo has a string S = s1 s2...sn consists of letter a , b and c . He ca ...

  3. [LeetCode] Unique Substrings in Wraparound String 封装字符串中的独特子字符串

    Consider the string s to be the infinite wraparound string of "abcdefghijklmnopqrstuvwxyz" ...

  4. Leetcode: Unique Substrings in Wraparound String

    Consider the string s to be the infinite wraparound string of "abcdefghijklmnopqrstuvwxyz" ...

  5. 云硬盘error、error deleting、deleting状态(数据库基本操作小记)

    起因是发现云硬盘显示删光了,但还是创建不了新的云硬盘,在api节点上用cinder list可以看到已经没有硬盘了,但是创建硬盘时,还是会提示配额满了,这是因为数据库里的记录没有更新,对数据库的操作记 ...

  6. Failed deleting my ephemeral node

    2017-01-05 11:07:39,490 WARN zookeeper.RecoverableZooKeeper: Node /hyperbase1/rs/tw-node1217,60020,1 ...

  7. CSU-1632 Repeated Substrings (后缀数组)

    Description String analysis often arises in applications from biology and chemistry, such as the stu ...

  8. Refresh recovery area usage data after manually deleting files under recovery area

    Original source: http://www.dba-oracle.com/t_v$_flash_recovery_area.htm If you manually delete files ...

  9. CF451D Count Good Substrings (DP)

    Codeforces Round #258 (Div. 2) Count Good Substrings D. Count Good Substrings time limit per test 2 ...

随机推荐

  1. Asp.net MVC Combres的简单用法

    第一步:添加nuget包 [1]添加 nuget包后,会自动在 webconfig里面 添加配置文件(不用改) <section name="dotless" type=&q ...

  2. [ZJOI2005]午餐 (DP)

    [ZJOI2005]午餐 题目描述 上午的训练结束了,THU ACM小组集体去吃午餐,他们一行N人来到了著名的十食堂.这里有两个打饭的窗口,每个窗口同一时刻只能给一个人打饭.由于每个人的口味(以及胃口 ...

  3. SpringMVC学习 -- @RequestParam , @RequestHeader , @CookieValue 的使用

    使用 @RequestParam 绑定请求参数值: value:参数名 , 仅有一个 value 属性时 , value 可以省略不写. required:是否必须.默认为 true , 表示请求参数 ...

  4. SSL步骤

    SSL步骤 被认证的服务器 1.创建keystore 2.创建信任证书 3.导出信任证书供客户端使用 客户端 1.创建keystore(如果不存在) 2.导入信任证书

  5. openlayers3中应用proj4js

    要在openlayers3中应用proj4js,需要在html中引用proj4js,然后在引用所需要的projection的js定义,如 http://epsg.io/21781-1753.js 然后 ...

  6. 【Foreign】置换 [数论][置换]

    置换 Time Limit: 10 Sec  Memory Limit: 256 MB Description Input Output Sample Input 4 2 1 4 3 Sample O ...

  7. HDU1024(最大M子段和)

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  8. platform_driver_register,什么时候调用PROBE函数 注册后如何找到驱动匹配的设备【转】

    转自:http://blog.chinaunix.net/uid-25508271-id-2979412.html kernel_init中do_basic_setup()->driver_in ...

  9. wscript运行js文件

    wscript运行js文件 http://www.cnblogs.com/jxgxy/archive/2013/09/20/3330818.html wscript运行js文件 wscript  ad ...

  10. Python实现图片转字符画

    from PIL import Image def get_char(r, g, b, alpha=256): ascii_char = '''$@B%8&WM#*oahkbdpqwmZO0Q ...