【题目大意】

求与n互质的第k个数。

【思路】

先求出小于k且与n互质的数,再利用gcd(bt+a,b)=gcd(a,b)的性质求解,效率低。枚举与n互质的数的效率是O(nlogn),求解第k个数的效率是O(1)。

据说0ms做法是容斥+二分?

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN= ;
int n,k;
int phi,p[MAXN];//与n互质的phi个数的表,其中第phi个放在下标0的位置。 int gcd(int a,int b)
{
if (a%b==) return b;
else return gcd(b,a%b);
} void getp()
{
phi=;
for (int i=;i<n;i++)
if (gcd(n,i)==) p[++phi]=i;
} int main()
{
while (~scanf("%d%d",&n,&k))
{
if (n!=)
{
getp();
printf("%d\n",k%phi==? (k-)/phi*n+p[phi]:k/phi*n+p[(k%phi)]);
}
else cout<<k<<endl;
}
return ;
}

更新:容斥+二分

【周期性/容斥+二分】POJ2773-HAPPY 2006的更多相关文章

  1. bzoj2440 完全平方数 莫比乌斯值+容斥+二分

    莫比乌斯值+容斥+二分 /** 题目:bzoj2440 完全平方数 链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第k个小x数 ...

  2. nyoj762——分解质因数+容斥+二分

    第k个互质数 时间限制:1000 ms  |  内存限制:65535 KB 难度:4   描述 两个数的a,b的gcd为1,即a,b互质,现在给你一个数m,你知道与它互质的第k个数是多少吗?与m互质的 ...

  3. BZOJ 2440 莫比乌斯函数+容斥+二分

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 5473  Solved: 2679[Submit][Sta ...

  4. 洛谷$P4318$ 完全平方数 容斥+二分

    正解:容斥/杜教筛+二分 解题报告: 传送门$QwQ$ 首先一看这数据范围显然是考虑二分这个数然后$check$就计算小于等于它的不是讨厌数的个数嘛. 于是考虑怎么算讨厌数的个数? 看到这个讨厌数说, ...

  5. poj2773(欧基里德算法 或 二分+容斥)

    题目链接:https://vjudge.net/problem/POJ-2773 题意:给定m,k,求与m互质的第k个数. 思路一:利用gcd(a,b)=gcd(b*t+a,b)知道,与m互质的数是以 ...

  6. codeforces B. Friends and Presents(二分+容斥)

    题意:从1....v这些数中找到c1个数不能被x整除,c2个数不能被y整除! 并且这c1个数和这c2个数没有相同的!给定c1, c2, x, y, 求最小的v的值! 思路: 二分+容斥,二分找到v的值 ...

  7. BZOJ2440(全然平方数)二分+莫比乌斯容斥

    题意:全然平方数是指含有平方数因子的数.求第ki个非全然平方数. 解法:比較明显的二分,getsum(int middle)求1-middle有多少个非全然平方数,然后二分.求1-middle的非全然 ...

  8. YYHS-分数(二分+容斥)

    题目描述 KJDH是个十分善于探索的孩子,有一天他把分子分母小于等于n的最简分数列在了纸上,他想找到这些分数里第k小的数,这对于KJDH来说当然是非常轻易,但是KJDH最近多了很多妹子,他还要去找妹子 ...

  9. 【二分+容斥+莫比乌斯反演】BZOJ2440 完全平方数

    Description 求第k个没有完全平方因子的数,k<=1e9. Solution 这其实就是要求第k个µ[i](莫比乌斯函数)不为0的数. 然而k太大数组开不下来是吧,于是这么处理. 二分 ...

随机推荐

  1. JSOI2008 星球大战 [并查集]

    题目描述 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者整个星系. 某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这些星球通过特殊的以太隧 ...

  2. [hdu 1067]bfs+hash

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1067 queue里面果然不能放vector,还是自己写的struct比较省内存…… #include& ...

  3. POJ3169:Layout(差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15705   Accepted: 7551 题目链接:http ...

  4. a 标签中 title 属性样式修改

    无文字描述,直接上测试页,看效果. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" " ...

  5. bzoj 1303 杂题

    首先如果一个数是中位数,在这段区间中比他大的数量=比他小的数量,那么如果一个数比他大设为1,比他小设为-1,设要求的数在数组中的位置是mid,那么我们可以用num[i] 表示1-mid这一段中,j-m ...

  6. Python小程序之购物车

    需求: 用户入口: 1.商品信息放在文件中,从文件中读取 2.已购商品,余额记录,第一要输入起始金额,以后不需要二次输入 商家入口: 2.可以添加商品,修改商品价格 # Author:Lee Siri ...

  7. 网络基础(osi、协议)

    *互联网协议 人和人沟通需要一套共同的标准,英语就是普遍的一种,计算机如果需要进行联网互通,也需要一种统一的标准,如果所有的计算机都遵守这种标准,就会实现网络的互联. 1.一系列统一的标准,这些标准称 ...

  8. ios的概述和了解的个人总结

    ios的概述: ios  为apple手持设备系统: OS X 为apple的macbook.imac.mac min等的操作系统: 应用程序的格式:dmg    pkg   app iphone 第 ...

  9. go语言中的json

    结构体类型转化为json格式 package main import ( "encoding/json" "fmt" ) //如果要转化成json格式,那么成员 ...

  10. .net开发CAD2008无法调试的解决方法

    把acad.exe.config文件修改为:------------------------------------------------------------------------------ ...