[BZOJ2111][ZJOI2010]Perm排列计数(组合数学)
题意就是求一个n个点的堆的合法形态数。
显然,给定堆中所有数的集合,则这个堆的根是确定的,而由于堆是完全二叉树,所以每个点左右子树的大小也是确定的。
设以i为根的堆的形态数为F(i),所以F(i)+=F(sz[2*i])*F(sz[2*i+1])*C(sz[i]-1,sz[2*i])。直接DP即可。
有个令人无语的坑,n可能大于p,要用Lucas。
还有求阶乘逆元的时候根本不需要用快速幂算出fac[n]的逆元再逆推回去,直接跟阶乘一样顺推就好了。
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=;
int n,p,fac[N],inv[N],Fin[N],s[N],f[N]; int C(int n,int m){
if (n<m) return ;
if (n<p && m<p) return 1ll*fac[n]*Fin[m]%p*Fin[n-m]%p;
return 1ll*C(n/p,m/p)*C(n%p,m%p)%p;
} int main(){
freopen("bzoj2111.in","r",stdin);
freopen("bzoj2111.out","w",stdout);
scanf("%d%d",&n,&p); int m=min(n,p);
fac[]=; rep(i,,m) fac[i]=1ll*fac[i-]*i%p;
inv[]=; rep(i,,m) inv[i]=1ll*(p-p/i)*inv[p%i]%p;
Fin[]=; rep(i,,m) Fin[i]=1ll*Fin[i-]*inv[i]%p;
for (int i=n; i; i--){
s[i]=s[i<<]+s[(i<<)|]+;
f[i]=1ll*((i<<)>n?:f[i<<])*((i<<|)>n?:f[i<<|])%p*C(s[i]-,s[i<<])%p;
}
printf("%d\n",f[]);
return ;
}
[BZOJ2111][ZJOI2010]Perm排列计数(组合数学)的更多相关文章
- [BZOJ2111]:[ZJOI2010]Perm 排列计数(组合数学)
题目传送门 题目描述 称一个1,2,...,N的排列${P}_{1}$,${P}_{2}$,...,${P}_{N}$是Magic的,当且仅当2≤i≤N时,${P}_{i}$>${P}_{\fr ...
- BZOJ2111: [ZJOI2010]Perm 排列计数
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意:一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2< ...
- [bzoj2111][ZJOI2010]Perm 排列计数 ——问题转换,建立数学模型
题目大意 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...
- 【BZOJ2111】[ZJOI2010]Perm 排列计数 组合数
[BZOJ2111][ZJOI2010]Perm 排列计数 Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi> ...
- BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]
2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1936 Solved: 477[Submit][ ...
- 2111: [ZJOI2010]Perm 排列计数
2111: [ZJOI2010]Perm 排列计数 链接 题意: 称一个1,2,...,N的排列$P_1,P_2...,P_n$是Magic的,当且仅当$2<=i<=N$时,$P_i> ...
- bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)
bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: ...
- BZOJ_2111_[ZJOI2010]Perm 排列计数_树形DP+组合数学
Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic ...
- 【bzoj2111】[ZJOI2010]Perm 排列计数 dp+Lucas定理
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Mogic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Mogic的,答案可能很 ...
随机推荐
- vue父组件中修改子组件样式
1. 使用全局样式 <style> /* 全局样式 */ </style> <style scoped> /* 本地样式 */ </style> 2. ...
- 如何用Ajax传一个数组数据
PHP接收多个同名复选框信息不像ASP那样自动转换成为数组,这给使用带来了一定不便.但是还是有解决办法的,就是利用javascript做一下预处 理.多个同名复选框在javascript中还是以数组的 ...
- ZOJ3261:Connections in Galaxy War(逆向并查集)
Connections in Galaxy War Time Limit: 3 Seconds Memory Limit: 32768 KB 题目链接:http://acm.zju.edu. ...
- es6+最佳入门实践(5)
5.对象扩展 5.1.对象简写 在es5中,有这样一种写法 var name = "xiaoqiang"; var age = 12; var obj = { name : nam ...
- python imageai 对象检测、对象识别
imageai库里面提供了目标识别,其实也可以说是目标检测,和现在很多的收集一样就是物体识别.他可以帮你识别出各种各样生活中遇见的事物.比如猫.狗.车.马.人.电脑.收集等等. 感觉imageai有点 ...
- Linux 开机自动挂载windows分区
blkid 查看 uuid如下ps:或者使用uuidgen <设备>查看具体设备的uuidreddusty@reddusty-X550JK:~$ sudo blkid[sudo] pass ...
- mysql五:数据操作
一 介绍 MySQL数据操作: DML ======================================================== 在MySQL管理软件中,可以通过SQL语句中的 ...
- Swift开发学习(一):初始篇
http://blog.csdn.net/powerlly/article/details/29351103 Swift开发学习:初始篇 关于 苹果公司于WWDC2014(Apple Worldwid ...
- 【反演复习计划】【bzoj3994】约数个数和
首先要用数学归纳证明一个结论,不过因为我实在是懒得打公式了... 先发代码吧. #include<bits/stdc++.h> #define N 50005 using namespac ...
- ie 下input光标位置垂直不居中问题
input输入框用一个背景图模拟,设置height和line-height一样的高度,使里面的输入文字能够居中, 在FF下出现的情况是:点击input时,输入光标其实上跟input的height一样高 ...