Recommender Systems with Deep Learning

Alessandro:ADA
Alessandro Suglia, Claudio Greco, Cataldo Musto, Marco de Gemmis, Pasquale Lops, Giovanni Semeraro:
A Deep Architecture for Content-based Recommendations Exploiting Recurrent Neural Networks. UMAP 2017: 202-211
Haochao:CDR
Haochao Ying, Liang Chen, Yuwen Xiong, Jian Wu:
Collaborative Deep Ranking: A Hybrid Pair-Wise Recommendation Algorithm with Implicit Feedback. PAKDD (2) 2016: 555-567
Paul:DNN
Paul Covington, Jay Adams, Emre Sargin:
Deep Neural Networks for YouTube Recommendations. RecSys 2016: 191-198
Ali:AMV
Ali Mamdouh Elkahky, Yang Song, Xiaodong He:
A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems. WWW 2015: 278-288
Jian:CFD
Jian Wei, Jianhua He, Kai Chen, Yi Zhou, Zuoyin Tang:
Collaborative filtering and deep learning based recommendation system for cold start items. Expert Syst. Appl. 69: 29-39 (2017)

Xin:AHC
Xin Dong, Lei Yu, Zhonghuo Wu, Yuxia Sun, Lingfeng Yuan, Fangxi Zhang:
A Hybrid Collaborative Filtering Model with Deep Structure for Recommender Systems. AAAI 2017: 1309-1315

Improving Scalability of Personalized Recommendation Systems for Enterprise Knowledge Workers
– Authors: C Verma, M Hart, S Bhatkar, A Parker (2016)
Multi-modal learning for video recommendation based on mobile application usage
– Authors: X Jia, A Wang, X Li, G Xun, W Xu, A Zhang (2016)
Collaborative Filtering with Stacked Denoising AutoEncoders and Sparse Inputs
– Authors: F Strub, J Mary (2016)
Applying Visual User Interest Profiles for Recommendation and Personalisation
– Authors: J Zhou, R Albatal, C Gurrin (2016)
Comparative Deep Learning of Hybrid Representations for Image Recommendations
– Authors: C Lei, D Liu, W Li, Zj Zha, H Li (2016)
Tag-Aware Recommender Systems Based on Deep Neural Networks
– Authors: Y Zuo, J Zeng, M Gong, L Jiao (2016)
Quote Recommendation in Dialogue using Deep Neural Network
– Authors: H Lee, Y Ahn, H Lee, S Ha, S Lee (2016)
Toward Fashion-Brand Recommendation Systems Using Deep-Learning: Preliminary Analysis
– Authors: Y Wakita, K Oku, K Kawagoe (2016)
Word embedding based retrieval model for similar cases recommendation
– Authors: Y Zhao, J Wang, F Wang (2016)
ConTagNet: Exploiting User Context for Image Tag Recommendation
– Authors: Ys Rawat, Ms Kankanhalli (2016)
Wide & Deep Learning for Recommender Systems
– Authors: Ht Cheng, L Koc, J Harmsen, T Shaked, T Chandra… (2016)
On Deep Learning for Trust-Aware Recommendations in Social Networks.
– Authors: S Deng, L Huang, G Xu, X Wu, Z Wu (2016)
A Survey and Critique of Deep Learning on Recommender Systems
– Authors: L Zheng (2016)
Collaborative Filtering and Deep Learning Based Hybrid Recommendation for Cold Start Problem
– Authors: J Wei, J He, K Chen, Y Zhou, Z Tang (2016)
Collaborative Filtering and Deep Learning Based Recommendation System For Cold Start Items
– Authors: J Wei, J He, K Chen, Y Zhou, Z Tang (2016)
Deep Neural Networks for YouTube Recommendations
– Authors: P Covington, J Adams, E Sargin (2016)
Towards Latent Context-Aware Recommendation Systems
– Authors: M Unger, A Bar, B Shapira, L Rokach (2016)
Automatic Recommendation Technology for Learning Resources with Convolutional Neural Network
– Authors: X Shen, B Yi, Z Zhang, J Shu, H Liu (2016)
Tag-Aware Personalized Recommendation Using a Deep-Semantic Similarity Model with Negative Sampling
– Authors: Z Xu, C Chen, T Lukasiewicz, Y Miao, X Meng (2016)
Latent Factor Representations for Cold-Start Video Recommendation
– Authors: S Roy, Sc Guntuku (2016)
Convolutional Matrix Factorization for Document Context-Aware Recommendation
– Authors: D Kim, C Park, J Oh, S Lee, H Yu (2016)
Conversational Recommendation System with Unsupervised Learning
– Authors: Y Sun, Y Zhang, Y Chen, R Jin (2016)
RecSys’ 16 Workshop on Deep Learning for Recommender Systems (DLRS)
– Authors: A Karatzoglou, B Hidasi, D Tikk, O Sar (2016, Workshop proceedings)
Ask the GRU: Multi-task Learning for Deep Text Recommendations
– Authors: T Bansal, D Belanger, A Mccallum (2016)
Recurrent Coevolutionary Latent Feature Processes for Continuous-Time Recommendation
– Authors: H Dai, Y Wang, R Trivedi, L Song (2016)
Keynote: Deep learning for audio-based music recommendation
– Authors: S Dieleman (2016)
Tumblr Blog Recommendation with Boosted Inductive Matrix Completion
– Authors: D Shin, S Cetintas, Kc Lee, Is Dhillon (2015)
Deep Collaborative Filtering via Marginalized Denoising Auto-encoder
– Authors: S Li, J Kawale, Y Fu (2015)
Learning Image and User Features for Recommendation in Social Networks
– Authors: X Geng, H Zhang, J Bian, Ts Chua (2015)
UCT-Enhanced Deep Convolutional Neural Network for Move Recommendation in Go
– Authors: S Paisarnsrisomsuk (2015)
A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems
– Authors: A Elkahky, Y Song, X He (2015)
It Takes Two to Tango: An Exploration of Domain Pairs for Cross-Domain Collaborative Filtering
– Authors: S Sahebi, P Brusilovsky (2015)
Latent Context-Aware Recommender Systems
– Authors: M Unger (2015)
Learning Distributed Representations from Reviews for Collaborative Filtering
– Authors: A Almahairi, K Kastner, K Cho, A Courville (2015)
A Collaborative Filtering Approach to Real-Time Hand Pose Estimation
– Authors: C Choi, A Sinha, Jh Choi, S Jang, K Ramani (2015)
Collaborative Deep Learning for Recommender Systems
– Authors: H Wang, N Wang, Dy Yeung (2014)
CARS2: Learning Context-aware Representations for Context-aware Recommendations
– Authors: Y Shi, A Karatzoglou, L Baltrunas, M Larson, A Hanjalic (2014)
Relational Stacked Denoising Autoencoder for Tag Recommendation
– Authors: H Wang, X Shi, Dy Yeung (2014)

DLRS(深度学习应用于推荐系统论文汇总--2017年8月整理)的更多相关文章

  1. DLRS(近三年深度学习应用于推荐系统论文汇总)

    Recommender Systems with Deep Learning Improving Scalability of Personalized Recommendation Systems ...

  2. [置顶] 人工智能(深度学习)加速芯片论文阅读笔记 (已添加ISSCC17,FPGA17...ISCA17...)

    这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于 ...

  3. 深度学习应用在推荐系统的论文-----A Novel Deep Learning-Based Collaborative Filtering Model for Recommendation System

    1.题目:一种新的基于深度学习的协同过滤推荐系统 2.摘要: 以协同过滤(CF)为基础的模型主要获取用户和项目的交互或者相关性.然而,现有的基于CF的方法只能掌握单一类型的关系,如RBM,它只能获取用 ...

  4. arXiv 2015深度学习年度十大论文

    由康奈尔大学运营维护着的arXiv网站,是一个在学术论文还未被出版时就将之向所有人开放的地方.这里汇聚了无数科学领域中最前沿的研究,机器学习也包括在内.它反映了学术界当前的整体趋势,我们看到,近来发布 ...

  5. 深度学习环境搭建常用网址、conda/pip命令行整理(pytorch、paddlepaddle等环境搭建)

    前言:最近研究深度学习,安装了好多环境,记录一下,方便后续查阅. 1. Anaconda软件安装 1.1 Anaconda Anaconda是一个用于科学计算的Python发行版,支持Linux.Ma ...

  6. python 深度学习 库文件安装出错汇总

    Cython_bbox FairMOT | win10下cython-bbox安装的心酸之路_是阳阳呀的博客-CSDN博客 swig 安装polyiou.py https://blog.csdn.ne ...

  7. Python深度学习(Deep Learning with Python) 中文版+英文版+源代码

    Keras作者.谷歌大脑François Chollet最新撰写的深度学习Python教程实战书籍(2017年12月出版)介绍深入学习使用Python语言和强大Keras库,详实新颖.PDF高清中文版 ...

  8. 推荐系统遇上深度学习(十)--GBDT+LR融合方案实战

    推荐系统遇上深度学习(十)--GBDT+LR融合方案实战 0.8012018.05.19 16:17:18字数 2068阅读 22568 推荐系统遇上深度学习系列:推荐系统遇上深度学习(一)--FM模 ...

  9. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

随机推荐

  1. mysql 创建表时注意事项

    mysql  创建表时注意事项 mysql 想必大家都不会陌生吧  是我学习中第一个接触的的数据库 已学习就很快上手的   这是一个关系型数据库  不懂什么是关系型数据库 啊哈哈哈  现在知道啦  因 ...

  2. day44--浮动和清浮动基本小结

    浮动和清浮动 一:浮动 浮动元素会生成一个块级框,而不论它本身是何种元素. 关于浮动的两个特点: 浮动的框可以向左或向右移动,直到它的外边缘碰到包含框或另一个浮动框的边框为止. 由于浮动框不在文档的普 ...

  3. abp学习资料

    参考: https://www.jianshu.com/p/a6e9ace79345

  4. ACM自己之前寒假的基础总结

    1.const double pi = acos(-1.0); acos:反余弦函数,需要#include<math.h>函数库,acos(-1.0)的意思就是求π的值 2.算法竞赛中,不 ...

  5. 单个html使用axios调用接口传参

    单个html页面使用axios调用接口传参(没有使用v-cli搭建框架,也没有使用qs等等) 1.使用 URLSearchParams的方法 var params = new URLSearchPar ...

  6. [转] 在body中没有元素把高度撑开的情况下,设置全屏

    [From] https://segmentfault.com/q/1010000006182839 html,body { margin:; padding:; min-height: 100vh; ...

  7. Oracle date和timestamp区别

    <转自> http://blog.csdn.net/huaguoming/article/details/8693679 在今天的工作中,学到了以下几个知识点: 一.date和timest ...

  8. 解决Android SDK Manager 更新下载慢以及待安装包列表不显示

    问题描述: Android SDK Manager 无法下载更新,或者更新速度超慢,或者待安装包列表不显示 解决方法: 第一步:修改hosts文件 修改后的hosts 文件内容为: 127.0.0.1 ...

  9. Quartz和TopShelf Windows服务作业调度

    上一次写了一遍关于Quartz作业调度的文章 Quartz.NET 作业调度使用 现在使用TopShelf和Quartz实现windows服务作业调度 TopShelf版本4.0 Quartz版本3. ...

  10. DB Intro - MongoDB Relations

    https://www.quackit.com/mongodb/tutorial/mongodb_create_a_relationship.cfm