DLRS(深度学习应用于推荐系统论文汇总--2017年8月整理)
Recommender Systems with Deep Learning
Alessandro:ADA
Alessandro Suglia, Claudio Greco, Cataldo Musto, Marco de Gemmis, Pasquale Lops, Giovanni Semeraro:
A Deep Architecture for Content-based Recommendations Exploiting Recurrent Neural Networks. UMAP 2017: 202-211
Haochao:CDR
Haochao Ying, Liang Chen, Yuwen Xiong, Jian Wu:
Collaborative Deep Ranking: A Hybrid Pair-Wise Recommendation Algorithm with Implicit Feedback. PAKDD (2) 2016: 555-567
Paul:DNN
Paul Covington, Jay Adams, Emre Sargin:
Deep Neural Networks for YouTube Recommendations. RecSys 2016: 191-198
Ali:AMV
Ali Mamdouh Elkahky, Yang Song, Xiaodong He:
A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems. WWW 2015: 278-288
Jian:CFD
Jian Wei, Jianhua He, Kai Chen, Yi Zhou, Zuoyin Tang:
Collaborative filtering and deep learning based recommendation system for cold start items. Expert Syst. Appl. 69: 29-39 (2017)
Xin:AHC
Xin Dong, Lei Yu, Zhonghuo Wu, Yuxia Sun, Lingfeng Yuan, Fangxi Zhang:
A Hybrid Collaborative Filtering Model with Deep Structure for Recommender Systems. AAAI 2017: 1309-1315
Improving Scalability of Personalized Recommendation Systems for Enterprise Knowledge Workers
– Authors: C Verma, M Hart, S Bhatkar, A Parker (2016)
Multi-modal learning for video recommendation based on mobile application usage
– Authors: X Jia, A Wang, X Li, G Xun, W Xu, A Zhang (2016)
Collaborative Filtering with Stacked Denoising AutoEncoders and Sparse Inputs
– Authors: F Strub, J Mary (2016)
Applying Visual User Interest Profiles for Recommendation and Personalisation
– Authors: J Zhou, R Albatal, C Gurrin (2016)
Comparative Deep Learning of Hybrid Representations for Image Recommendations
– Authors: C Lei, D Liu, W Li, Zj Zha, H Li (2016)
Tag-Aware Recommender Systems Based on Deep Neural Networks
– Authors: Y Zuo, J Zeng, M Gong, L Jiao (2016)
Quote Recommendation in Dialogue using Deep Neural Network
– Authors: H Lee, Y Ahn, H Lee, S Ha, S Lee (2016)
Toward Fashion-Brand Recommendation Systems Using Deep-Learning: Preliminary Analysis
– Authors: Y Wakita, K Oku, K Kawagoe (2016)
Word embedding based retrieval model for similar cases recommendation
– Authors: Y Zhao, J Wang, F Wang (2016)
ConTagNet: Exploiting User Context for Image Tag Recommendation
– Authors: Ys Rawat, Ms Kankanhalli (2016)
Wide & Deep Learning for Recommender Systems
– Authors: Ht Cheng, L Koc, J Harmsen, T Shaked, T Chandra… (2016)
On Deep Learning for Trust-Aware Recommendations in Social Networks.
– Authors: S Deng, L Huang, G Xu, X Wu, Z Wu (2016)
A Survey and Critique of Deep Learning on Recommender Systems
– Authors: L Zheng (2016)
Collaborative Filtering and Deep Learning Based Hybrid Recommendation for Cold Start Problem
– Authors: J Wei, J He, K Chen, Y Zhou, Z Tang (2016)
Collaborative Filtering and Deep Learning Based Recommendation System For Cold Start Items
– Authors: J Wei, J He, K Chen, Y Zhou, Z Tang (2016)
Deep Neural Networks for YouTube Recommendations
– Authors: P Covington, J Adams, E Sargin (2016)
Towards Latent Context-Aware Recommendation Systems
– Authors: M Unger, A Bar, B Shapira, L Rokach (2016)
Automatic Recommendation Technology for Learning Resources with Convolutional Neural Network
– Authors: X Shen, B Yi, Z Zhang, J Shu, H Liu (2016)
Tag-Aware Personalized Recommendation Using a Deep-Semantic Similarity Model with Negative Sampling
– Authors: Z Xu, C Chen, T Lukasiewicz, Y Miao, X Meng (2016)
Latent Factor Representations for Cold-Start Video Recommendation
– Authors: S Roy, Sc Guntuku (2016)
Convolutional Matrix Factorization for Document Context-Aware Recommendation
– Authors: D Kim, C Park, J Oh, S Lee, H Yu (2016)
Conversational Recommendation System with Unsupervised Learning
– Authors: Y Sun, Y Zhang, Y Chen, R Jin (2016)
RecSys’ 16 Workshop on Deep Learning for Recommender Systems (DLRS)
– Authors: A Karatzoglou, B Hidasi, D Tikk, O Sar (2016, Workshop proceedings)
Ask the GRU: Multi-task Learning for Deep Text Recommendations
– Authors: T Bansal, D Belanger, A Mccallum (2016)
Recurrent Coevolutionary Latent Feature Processes for Continuous-Time Recommendation
– Authors: H Dai, Y Wang, R Trivedi, L Song (2016)
Keynote: Deep learning for audio-based music recommendation
– Authors: S Dieleman (2016)
Tumblr Blog Recommendation with Boosted Inductive Matrix Completion
– Authors: D Shin, S Cetintas, Kc Lee, Is Dhillon (2015)
Deep Collaborative Filtering via Marginalized Denoising Auto-encoder
– Authors: S Li, J Kawale, Y Fu (2015)
Learning Image and User Features for Recommendation in Social Networks
– Authors: X Geng, H Zhang, J Bian, Ts Chua (2015)
UCT-Enhanced Deep Convolutional Neural Network for Move Recommendation in Go
– Authors: S Paisarnsrisomsuk (2015)
A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems
– Authors: A Elkahky, Y Song, X He (2015)
It Takes Two to Tango: An Exploration of Domain Pairs for Cross-Domain Collaborative Filtering
– Authors: S Sahebi, P Brusilovsky (2015)
Latent Context-Aware Recommender Systems
– Authors: M Unger (2015)
Learning Distributed Representations from Reviews for Collaborative Filtering
– Authors: A Almahairi, K Kastner, K Cho, A Courville (2015)
A Collaborative Filtering Approach to Real-Time Hand Pose Estimation
– Authors: C Choi, A Sinha, Jh Choi, S Jang, K Ramani (2015)
Collaborative Deep Learning for Recommender Systems
– Authors: H Wang, N Wang, Dy Yeung (2014)
CARS2: Learning Context-aware Representations for Context-aware Recommendations
– Authors: Y Shi, A Karatzoglou, L Baltrunas, M Larson, A Hanjalic (2014)
Relational Stacked Denoising Autoencoder for Tag Recommendation
– Authors: H Wang, X Shi, Dy Yeung (2014)
DLRS(深度学习应用于推荐系统论文汇总--2017年8月整理)的更多相关文章
- DLRS(近三年深度学习应用于推荐系统论文汇总)
Recommender Systems with Deep Learning Improving Scalability of Personalized Recommendation Systems ...
- [置顶]
人工智能(深度学习)加速芯片论文阅读笔记 (已添加ISSCC17,FPGA17...ISCA17...)
这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于 ...
- 深度学习应用在推荐系统的论文-----A Novel Deep Learning-Based Collaborative Filtering Model for Recommendation System
1.题目:一种新的基于深度学习的协同过滤推荐系统 2.摘要: 以协同过滤(CF)为基础的模型主要获取用户和项目的交互或者相关性.然而,现有的基于CF的方法只能掌握单一类型的关系,如RBM,它只能获取用 ...
- arXiv 2015深度学习年度十大论文
由康奈尔大学运营维护着的arXiv网站,是一个在学术论文还未被出版时就将之向所有人开放的地方.这里汇聚了无数科学领域中最前沿的研究,机器学习也包括在内.它反映了学术界当前的整体趋势,我们看到,近来发布 ...
- 深度学习环境搭建常用网址、conda/pip命令行整理(pytorch、paddlepaddle等环境搭建)
前言:最近研究深度学习,安装了好多环境,记录一下,方便后续查阅. 1. Anaconda软件安装 1.1 Anaconda Anaconda是一个用于科学计算的Python发行版,支持Linux.Ma ...
- python 深度学习 库文件安装出错汇总
Cython_bbox FairMOT | win10下cython-bbox安装的心酸之路_是阳阳呀的博客-CSDN博客 swig 安装polyiou.py https://blog.csdn.ne ...
- Python深度学习(Deep Learning with Python) 中文版+英文版+源代码
Keras作者.谷歌大脑François Chollet最新撰写的深度学习Python教程实战书籍(2017年12月出版)介绍深入学习使用Python语言和强大Keras库,详实新颖.PDF高清中文版 ...
- 推荐系统遇上深度学习(十)--GBDT+LR融合方案实战
推荐系统遇上深度学习(十)--GBDT+LR融合方案实战 0.8012018.05.19 16:17:18字数 2068阅读 22568 推荐系统遇上深度学习系列:推荐系统遇上深度学习(一)--FM模 ...
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
随机推荐
- Android 生成xml文件及xml的解析
1.生成xml文件的两种方式 (1)采用拼接的方式生成xml(不推荐使用) (2)利用XmlSerializer类生成xml文件 package com.example.lucky.test52xml ...
- 【算法笔记】B1016 部分A+B
1016 部分A+B (15 分) 正整数 A 的“DA(为 1 位整数)部分”定义为由 A 中所有 DA 组成的新整数 PA.例如:给定 A=3862767,DA=6,则 A ...
- CNN 卷积神经网络结构
cnn每一层会输出多个feature map, 每个Feature Map通过一种卷积滤波器提取输入的一种特征,每个feature map由多个神经元组成,假如某个feature map的shape是 ...
- android 无线调试 [无需数据线][无需root]
无线调试首要条件在同一网段,打开开发者模式 1,打开 5555 端口 使用数据线链接手机,在命令窗口执行:adb tcpip 5555 2,adb 链接手机调试 这时无需数据线了,在命令窗口执行:ad ...
- Java非递归实现迷宫问题
这个题目是本人的一次课程设计,也是我第一次独立做完的一个小玩意,说实话,昨晚的那一刻很有成就感.整个人开心到在自习室蹦起来.因为之前一直是自学的Java,从没有自己做过任何一个项目,这一个课程设计就花 ...
- Java - 打印质数(使用控制嵌套循环跳转)
使用控制嵌套循环跳转,打印输出10 ~ 150之间的质数 代码: public class Testcotinue { public static void main(String[] args) { ...
- Python+Selenium设置元素等待
显式等待 显式等待使 WebdDriver 等待某个条件成立时继续执行,否则在达到最大时长时抛弃超时异常 (TimeoutException). #coding=utf-8 from selenium ...
- opencv + ffmpeg
opencv2.4.13 与 ffmepg 3.0 一起是可以安装成功的.注意编译ffmpeg时, ./configure --enable-shared 否则会报错. 另外,把以上组合换成ope ...
- Open Closed Principle(OCP)开闭原则
面向对象的最基本原则 Software entites like classes,modules and functions should be open for extension but cloa ...
- JAVA 中 if和while的区别
while和if本身就用法不同,一个是循环语句,一个是判断语句. if 只做判断,判断一次之后,便不会再回来了while 的话,循环,直到结果为false,才跳出来 链表的结构,要一直读下去,直到读完 ...