咕咕了。。。于是借鉴了小粉兔的做法ORZ。。。


其实就是维护最大子段和的线段树,但上面又多了一些操作。。。。QWQ

维护8个信息:1/0的个数(sum),左/右边起1/0的最长长度(ls,rs),整段区间中1/0的连续最长长度(mx)。

于是对于各个操作,我们有了一些tag。。。

tg1[]是区间赋值标记,没有标记时为-1,有标记时为0或1;tg2[]是区间取反标记,没有标记时为 0,有标记时为1。

注意标记下传时要先传tg1[],再传tg2[],否则取反标记会被赋值标记覆盖

#include<cstdio>
#include<iostream>
#define R register int
#define ls (tr<<1)
#define rs (tr<<1|1)
const int N=;
using namespace std;
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
int n,q,a[N];
struct node{
int sum0,sum1,ls0,ls1,rs0,rs1,mx0,mx1;
node(int s0=,int s1=,int ls0=,int ls1=,int rs0=,int rs1=,int mx0=,int mx1=):
sum0(s0),sum1(s1),ls0(ls0),ls1(ls1),rs0(rs0),rs1(rs1),mx0(mx0),mx1(mx1) {}
};
inline node upd(node l,node r) {
return node(l.sum0+r.sum0,l.sum1+r.sum1,
l.sum1?l.ls0:l.sum0+r.ls0,l.sum0?l.ls1:l.sum1+r.ls1,
r.sum1?r.rs0:r.sum0+l.rs0,r.sum0?r.rs1:r.sum1+l.rs1,
max(max(l.mx0,r.mx0),l.rs0+r.ls0),
max(max(l.mx1,r.mx1),l.rs1+r.ls1));
} node t[N]; int len[N],tg1[N],tg2[N];
inline void push(int tr,int typ) {
node& tmp=t[tr];
if(typ==) tg2[tr]=,tg1[tr]=,tmp=node(,len[tr],,len[tr],,len[tr],,len[tr]);
else if(typ==) tg2[tr]=,tg1[tr]=,tmp=node(len[tr],,len[tr],,len[tr],,len[tr],);
else if(typ==) tg2[tr]^=,swap(tmp.sum0,tmp.sum1),swap(tmp.ls0,tmp.ls1),swap(tmp.rs0,tmp.rs1),swap(tmp.mx0,tmp.mx1);
}
inline void spread(int tr) {
if(~tg1[tr]) push(ls,tg1[tr]),push(rs,tg1[tr]);
if(tg2[tr]) push(ls,),push(rs,);
tg1[tr]=-,tg2[tr]=;
}
inline void build(int tr,int l,int r) {
len[tr]=r-l+,tg1[tr]=-;
if(l==r) {R tmp=g(); t[tr]=node(tmp,tmp^,tmp,tmp^,tmp,tmp^,tmp,tmp^); return ;} R md=l+r>>;
build(ls,l,md),build(rs,md+,r); t[tr]=upd(t[ls],t[rs]);
}
inline void change(int tr,int l,int r,int LL,int RR,int d) {
if(LL<=l&&r<=RR) {push(tr,d); return ;} spread(tr); R md=l+r>>;
if(LL<=md) change(ls,l,md,LL,RR,d); if(RR>md) change(rs,md+,r,LL,RR,d);
t[tr]=upd(t[ls],t[rs]);
}
inline node query(int tr,int l,int r,int LL,int RR) {
if(LL<=l&&r<=RR) return t[tr]; spread(tr); R md=l+r>>; register node ret=node();
if(LL<=md) ret=query(ls,l,md,LL,RR); if(RR>md) ret=upd(ret,query(rs,md+,r,LL,RR)); return ret;
}
signed main() {
n=g(),q=g(); build(,,n);
for(R i=;i<=q;++i) {
R op=g(),l=g()+,r=g()+;
if(op<) change(,,n,l,r,op);
else {register node tmp=query(,,n,l,r); printf("%d\n",op==?tmp.sum0:tmp.mx0);}
}
}

2019.04.27

Luogu P2572 [SCOI2010]序列操作 线段树。。的更多相关文章

  1. 洛谷$P2572\ [SCOI2010]$ 序列操作 线段树/珂朵莉树

    正解:线段树/珂朵莉树 解题报告: 传送门$w$ 本来是想写线段树的,,,然后神仙$tt$跟我港可以用珂朵莉所以决定顺便学下珂朵莉趴$QwQ$ 还是先写线段树做法$QwQ$? 操作一二三四都很$eas ...

  2. 【题解】Luogu P2572 [SCOI2010]序列操作

    原题传送门:P2572 [SCOI2010]序列操作 这题好弱智啊 裸的珂朵莉树 前置芝士:珂朵莉树 窝博客里对珂朵莉树的介绍 没什么好说的自己看看吧 操作1:把区间内所有数推平成0,珂朵莉树基本操作 ...

  3. BZOJ 1858: [Scoi2010]序列操作( 线段树 )

    略恶心的线段树...不过只要弄清楚了AC应该不难.... ---------------------------------------------------------------- #inclu ...

  4. bzoj1858[Scoi2010]序列操作 线段树

    1858: [Scoi2010]序列操作 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 3079  Solved: 1475[Submit][Statu ...

  5. 【bzoj1858】[Scoi2010]序列操作 线段树区间合并

    题目描述 lxhgww最近收到了一个01序列,序列里面包含了n个数,这些数要么是0,要么是1,现在对于这个序列有五种变换操作和询问操作: 0 a b 把[a, b]区间内的所有数全变成0 1 a b ...

  6. [SCOI2010]序列操作 线段树

    ---题面--- 题解: 在考场上打的这道题,出人意料的很快就打完了?! 直接用线段树,维护几个东西: 1,lazy标记 : 表示区间赋值 2,mark标记:表示区间翻转 3,l1:前缀最长连续的1的 ...

  7. bzoj1858 [Scoi2010]序列操作——线段树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1858 线段树...调了一个上午...(后面带 // 的都是改出来的) lazy 标记的下放好 ...

  8. P2572 [SCOI2010]序列操作

    对自己 & \(RNG\) : 骄兵必败 \(lpl\)加油! P2572 [SCOI2010]序列操作 题目描述 lxhgww最近收到了一个01序列,序列里面包含了n个数,这些数要么是0,要 ...

  9. 【题解】P4247 [清华集训]序列操作(线段树修改DP)

    [题解]P4247 [清华集训]序列操作(线段树修改DP) 一道神仙数据结构(DP)题. 题目大意 给定你一个序列,会区间加和区间变相反数,要你支持查询一段区间内任意选择\(c\)个数乘起来的和.对1 ...

随机推荐

  1. (三)maven出错记录

    此处因为是自己做的所以文笔带过,简单描述下 1\首先是jsp页面报错,缺少必要的servletx依赖jar包,需要在pom中配置 <dependency><groupId>ja ...

  2. module 'keras.engine.topology' has no attribute 'load_weights_from_hdf5_group_by_name'

    参考: https://blog.csdn.net/heiheiya/article/details/81111932 https://blog.csdn.net/c20081052/article/ ...

  3. dev 官网

    https://www.devexpress.com/Support/Center/Example/Details/E1343 <%@ Page Language="C#" ...

  4. getContextPath、getServletPath、getRequestURI,getRealPath的区别

    假定你的web application 项目名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下 ...

  5. 《the art of software testing》第五章

    构建大型程序测试的第一个步骤:模块测试 测试用例的设计 在为模块测试设计测试用例时,需要两种信息:模块的规格说明和模块源代码: 模块测试总体上面向白盒测试: 模块测试的测试用例设计过程:使用一种或多种 ...

  6. 【Web API2】ASP.NET Web API Security

    实现安全的方式既可以是host提供,也可以框架提供. 1,HTTP Module 方式,工作在IIS上,所以web api要托管在IIS上才行.其作用于HTTP管道的最前端,所以这种方式影响的是全局, ...

  7. Map存储容量及内存占用测试

    Integer a = 1; long start = 0; long end = 0; // 先垃圾回收 System.gc(); start = Runtime.getRuntime().free ...

  8. Underscore.js 1.3.3 中文解释

    // Underscore.js 1.3.3 // (c) 2009-2012 Jeremy Ashkenas, DocumentCloud Inc. // Underscore is freely ...

  9. 七月小说网 Python + GraphQL (三)

    概述 后台数据库几个基本表基本搭建完毕,看了下Github Develop的V4 Api抛弃了RESTful,采用GraphQL,感觉很有意思,一看文档,竟然有Python的开源实现 Graphene ...

  10. Invoke()的使用

    (最近在看协程) Invoke()方法是一种委托机制 Invoke ( "SendMsg", 3 ), 意思是3秒之后调用 SendMsg() 方法 使用时应该注意以下几点: 1. ...