15、OpenCV Python 轮廓发现
__author__ = "WSX"
import cv2 as cv
import numpy as np
# 基于拓扑结构来发现和绘制(边缘提取)
# cv.findContours() 发现轮廓
# cv.drawContours() 绘制轮廓
# 使用梯度 ,不需要阈值了就 def edge_demo(image):
blurred = cv.GaussianBlur(image, (3, 3), 0)
gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY)
# X Gradient
xgrad = cv.Sobel(gray, cv.CV_16SC1, 1, 0)
# Y Gradient
ygrad = cv.Sobel(gray, cv.CV_16SC1, 0, 1)
#edge
#edge_output = cv.Canny(xgrad, ygrad, 50, 150)
edge_output = cv.Canny(gray, 30, 100)
cv.imshow("Canny Edge", edge_output)
return edge_output def contours_demo(image):
"""dst = cv.GaussianBlur(image, (3, 3), 0)
gray = cv.cvtColor(dst, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
cv.imshow("binary image", binary)"""
binary = edge_demo(image) cloneImage, contours, heriachy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
# cv.RETR_EXTERNAL最大轮廓 CHAIN_APPROX_SIMPLE简单的
#contours 放轮廓 heriachy层次信息
for i, contour in enumerate(contours):
cv.drawContours(image, contours, i, (0, 0, 255), 2)
#绘制(0, 0, 255)颜色 2 为宽度 若为-1 则填充轮廓
approxCurve = cv.approxPolyDP(contour, 4, True)
if approxCurve.shape[0] > 6:
cv.drawContours(image, contours, i, (0, 255, 255), 2)
if approxCurve.shape[0] == 4:
cv.drawContours(image, contours, i, (255, 255, 0), 2)
print(approxCurve.shape[0])
print(i)
cv.imshow("detect contours", image) def main():
img = cv.imread("1.JPG")
cv.namedWindow("Show", cv.WINDOW_AUTOSIZE)
cv.imshow("Show", img) contours_demo(img)
cv.waitKey(0)
cv.destroyAllWindows() main()
15、OpenCV Python 轮廓发现的更多相关文章
- 【python+opencv】轮廓发现
python+opencv---轮廓发现 轮廓发现---是基于图像边缘提取的基础寻找对象轮廓的方法, 所有边缘提取的阈值选定会影响最终轮廓发现的结果. 介绍两种API使用: -cv.findConto ...
- OpenCV—Python 轮廓检测 绘出矩形框(findContours\ boundingRect\rectangle
千万注意opencv的轮廓检测和边缘检测是两码事 本文链接:https://blog.csdn.net/wsp_1138886114/article/details/82945328 1 获取轮廓 O ...
- Python+OpenCV图像处理(十六)—— 轮廓发现
简介:轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终轮廓发现结果. 代码如下: import cv2 as cv import numpy as np def c ...
- opencv——轮廓发现与轮廓(二值图像)分析
引言 二值图像分析最常见的一个主要方式就是轮廓发现与轮廓分析,其中轮廓发现的目的是为轮廓分析做准备,经过轮廓分析我们可以得到轮廓各种有用的属性信息. 这里顺带提下边缘检测,和轮廓提取的区别: 边缘检测 ...
- python实现轮廓发现
目录: (一)轮廓发现的介绍 (二)代码实现 (1)使用直接使用阈值方法threshold方法获取二值化图像来选择轮廓 (2)使用canny边缘检测获取二值化图像 (一)轮廓发现的介绍与API的介绍 ...
- opencv::轮廓发现(find contour in your image)
轮廓发现(find contour) 轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法. 所以边缘提取的阈值选定会影响最终轮廓发现结果 //发现轮廓 cv::findContours( InputO ...
- OpenCV + Python 人脸检测
必备知识 Haar-like opencv api 读取图片 灰度转换 画图 显示图像 获取人脸识别训练数据 探测人脸 处理人脸探测的结果 实例 图片素材 人脸检测代码 人脸检测结果 总结 下午的时候 ...
- OpenCV + python 实现人脸检测(基于照片和视频进行检测)
OpenCV + python 实现人脸检测(基于照片和视频进行检测) Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征 ...
- 手把手教你如何用 OpenCV + Python 实现人脸识别
下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like 通俗的来讲,就是作为人脸特 ...
随机推荐
- 凸优化 Convex Optimization PDF 扫描文字识别版
凸优化理论 Convex Optimization 清华大学出版社 王书宁许窒黄晓霖译 Stephen Boyd Lieven Vandenbergt原著 2013 年l 月第1 版 下载链接 链接: ...
- Halcon学习之四:有关图像生成的函数
1.copy_image ( Image : DupImage : : ) 复制image图像 2.region_to_bin ( Region : BinImage : ForegroundGray ...
- Java微信公众平台开发(十六)--微信网页授权(OAuth2.0授权)获取用户基本信息
转自:http://www.cuiyongzhi.com/post/78.html 好长时间没有写文章了,主要是最近的工作和生活上的事情比较多而且繁琐,其实到现在我依然还是感觉有些迷茫,最后还是决定静 ...
- c++builder delphi 调用dll dll编写
c++builder动态调用dll // 定义 typedef int __stdcall MyFunction (int x, char *str); ; String dllName = &quo ...
- Pagination分页
基本语法 下面展示Paginator的基本使用 >>> from django.core.paginator import Paginator >>> object ...
- Android 模拟MotionEvent事件 触发输入法
Android 模拟MotionEvent事件 触发输入法 android输入法layoutbutton文本编辑encoding 关键词:MotionEvent,模拟按键,模拟点击事件,主动弹出输 ...
- Logos
[Logos] Logos is a component of the Theos development suite that allows method hooking code to be wr ...
- 【原创】2. MYSQL++之Connect类型
mysqlpp:: Connect类型主要负责连接事宜,这是在所有开始mysql操作之前必须进行的(这是句废话). 该类型的主要的结果如下所示 mysqlpp::OpeitonalExceptions ...
- Project2--Lucene的Ranking算法修改:BM25算法
原文出自:http://blog.csdn.net/wbia2010lkl/article/details/6046661 1. BM25算法 BM25是二元独立模型的扩展,其得分函数有很 ...
- jar包上传到jcenter
H:\[BOOT]\gradle-5.0-bin\gradle-5.0\gradle.properties # in $HOME/.gradle/gradle.properties java6Home ...