zoj 1100 - Mondriaan's Dream
题目:在m*n的地板上铺上同样的1*2的地板砖,问有多少种铺法。
分析:dp,组合,计数。经典dp问题,状态压缩。
状态:设f(i,j)为前i-1行铺满,第i行铺的状态的位表示为j时的铺砖种类数;
转移:由于仅仅能横铺或者竖铺。那么一个砖块铺之前的状态仅仅有两种;
且假设当前竖放会对下一行产生影响,建立相邻两行状态相应关系。
这里利用dfs找到全部f(i。j)的上一行的全部前置状态f(i-1,k)加和就可以。
f(i。j)= sum(f(i-1,k)){ 当中,f(i-1,k)能够产生f(i。j)状态 };
(大黄的三维DP实现简单,效率较差。)
组合学公式 :π(4cos(pi+i/(h+1))^2+4cos(pi+j/(w+1))^2) { 1<=i<=h/2,1<=j<=w/2 }。
说明:纠结N久最后发现%I64d一直WA。%lld就过了。(2011-09-27 19:15)。
#include <stdio.h>
#include <stdlib.h>
#include <string.h> typedef struct node
{
int s,l;
}seg;
seg S[ 10 ]; long long F[ 12 ][ 1<<11 ]; int V[ 1<<11 ][ 99 ];
int Count[ 1<<11 ]; //用dfs找到能够到达的状态
void dfs( int A, int B, int C )
{
if ( !A ) {
V[ C ][ ++ Count[ C ] ] = B;
return;
}else {
int V = A&-A;//取得最后一个 1的位置
dfs( A&~V, B&~V, C );
if ( A&(V<<1) ) dfs( A&~(3*V), B, C );
}
} int main()
{
int n,m;
while ( scanf("%d%d",&n,&m) != EOF && m ) { if ( n%2&&m%2 ) {printf("0\n");continue;}
if ( m>n ) {int t = m;m = n;n = t;} int M = (1<<m)-1;
for ( int i = 0 ; i <= M ; ++ i ) {
Count[ i ] = 0;
dfs( i, M, i );
} for ( int i = 0 ; i <= n ; ++ i )
for ( int j = 0 ; j <= M ; ++ j )
F[ i ][ j ] = 0LL;
F[ 0 ][ M ] = 1LL; for ( int i = 1 ; i <= n ; ++ i )
for ( int j = M ; j >= 0 ; -- j )
for ( int k = Count[ j ] ; k >= 1 ; -- k )
F[ i ][ j ] += F[ i-1 ][ V[ j ][ k ] ]; printf("%lld\n",F[ n ][ M ]);
}
return 0;
}
zoj 1100 - Mondriaan's Dream的更多相关文章
- POJ 2411 Mondriaan's Dream
状压DP Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 9938 Accepted: 575 ...
- poj 2411 Mondriaan's Dream 【dp】
题目:id=2411" target="_blank">poj 2411 Mondriaan's Dream 题意:给出一个n*m的矩阵,让你用1*2的矩阵铺满,然 ...
- [ACM] HDU 1400 Mondriaan's Dream (状态压缩,长2宽1长方形铺满)
Mondriaan's Dream Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Othe ...
- POJ 2411 Mondriaan's Dream (dp + 减少国家)
链接:http://poj.org/problem?id=2411 题意:题目描写叙述:用1*2 的矩形通过组合拼成大矩形.求拼成指定的大矩形有几种拼法. 參考博客:http://blog.csdn. ...
- 状压dp Mondriaan's Dream poj2411
超经典的一道题目,实现这题的方法也有非常多种 1.利用DFS建立矩阵,然后通过高速矩阵幂得到答案(运用于min(m,n)比較小.可是max(m,n)很大的情况) 2.利用dp状压解决 第一种在我的还有 ...
- HDU 1400 (POJ 2411 ZOJ 1100)Mondriaan's Dream(DP + 状态压缩)
Mondriaan's Dream Problem Description Squares and rectangles fascinated the famous Dutch painter Pie ...
- UVA - 10057 A mid-summer night's dream.
偶数时,中位数之间的数都是能够的(包含中位数) 奇数时,一定是中位数 推导请找初中老师 #include<iostream> #include<cstdio> #include ...
- HDU 4430 & ZOJ 3665 Yukari's Birthday(二分法+枚举)
主题链接: HDU:pid=4430" target="_blank">http://acm.hdu.edu.cn/showproblem.php?pid=4430 ...
- zoj 1738 - Lagrange's Four-Square Theorem
称号:四方形定理.输出可以表示为一个数目不超过四个平方和表示的数. 分析:dp,完全背包.背包分割整数.可用一维分数计算,它也可以被写为一个二维团结. 状态:设f(i,j,k)为前i个数字,取j个数字 ...
随机推荐
- CompareUtil
java package com.daojia.beauty.open.utils; import org.slf4j.Logger; import org.slf4j.LoggerFactory; ...
- mysql之any,some all(zz)
转载自:http://blog.csdn.net/netcy/article/details/8464503 ALL和ANY操作符的常见用法是结合一个相对比较操作符对一个数据列子查询的结果进行测试.它 ...
- spring applicationContext.xml 中bean配置
如果采用set get方法配置bean,bean需要有set get 方法需要有无参构造函数,spring 在生成对象时候会调用get和set方法还有无参构造函数 如果采用constructor方法则 ...
- thinkphp5最美跳转页面
声明下:此教程来自TP官网,如果需要看原文,请点击一下链接 http://www.thinkphp.cn/code/3437.html 先给大家看下效果: 直接撸代码: 第一步:为了增加对移动设备 ...
- windows8 使用docker创建第一个nodejs运行环境
现在公司电脑使用的是windows8操作系统,如果想要运行docker,只能安装Docker ToolBox 关于安装Docker ToolBox,请查看文章<windows8安装docker( ...
- dart Stream
- CF 990B. Micro-World【数组操作/贪心/STL/二分搜索】
[链接]:CF [题意]:对任意一个数a[i] ,可以对任意 满足 i != j 且 a[i] > a[j] && a[i] <= a[j] +k 的 a[j] 可以被删掉 ...
- 51nod 1283 最小周长【注意开根号】
1283 最小周长 题目来源: Codility 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 收藏 关注 一个矩形的面积为S,已知该矩形的边长都是整数,求所有 ...
- 线段树+差分【p1438】无聊的数列
Description 维护一个数列{a[i]},支持两种操作: 1.1 L R K D:给出一个长度等于R-L+1的等差数列,首项为K,公差为D,并将它对应加到a[L]~a[R]的每一个数上.即:令 ...
- css中width和height默认值
width和height默认都是auto自动伸缩的,但不同的标签效果却不一样比如div默认是width:100%,通常不用写100%如果是table,如果div内的table没有设定100%,那就是最 ...