lintcode-76-最长上升子序列
76-最长上升子序列
给定一个整数序列,找到最长上升子序列(LIS),返回LIS的长度。
说明
最长上升子序列的定义:
最长上升子序列问题是在一个无序的给定序列中找到一个尽可能长的由低到高排列的子序列,这种子序列不一定是连续的或者唯一的。https://en.wikipedia.org/wiki/Longest_increasing_subsequence样例
给出 [5,4,1,2,3],LIS 是 [1,2,3],返回 3
给出 [4,2,4,5,3,7],LIS 是 [2,4,5,7],返回 4挑战
要求时间复杂度为O(n^2) 或者 O(nlogn)
标签
动态规划 LintCode 版权所有 二分法
思路
参见博客http://www.cnblogs.com/dartagnan/archive/2011/08/29/2158247.html,利用栈和二分查找。
这个算法其实已经不是DP了,有点像贪心。至于复杂度降低其实是因为这个算法里面用到了二分搜索。本来有N个数要处理是O(n),每次计算要查找N次还是O(n),一共就是O(n^2);现在搜索换成了O(logn)的二分搜索,总的复杂度就变为O(nlogn)了。
这个算法的具体操作如下(by RyanWang):
开一个栈,每次取栈顶元素top和读到的元素temp做比较,如果temp > top 则将temp入栈;如果temp < top则二分查找栈中的比temp大的第1个数,并用temp替换它。 最长序列长度即为栈的大小top。
这也是很好理解的,对于x和y,如果x < y且Stack[y] < Stack[x],用Stack[x]替换Stack[y],此时的最长序列长度没有改变但序列Q的''潜力''增大了。举例:原序列为1,5,8,3,6,7
栈为1,5,8,此时读到3,用3替换5,得到1,3,8; 再读6,用6替换8,得到1,3,6;再读7,得到最终栈为1,3,6,7。最长递增子序列为长度4。当出现1,5,8,2这种情况时,栈内最后的数是1,2,8不是正确的序列啊?难道错了?
分析一下,我们可以看出,虽然有些时候这样得不到正确的序列了,但最后算出来的个数是没错的,为什么呢?
想想,当temp>top时,总个数直接加1,这肯定没错;但当temp<top时呢? 这时temp肯定只是替换了栈里面的某一个元素,所以大小不变,就是说一个小于栈顶的元素加入时,总个数不变。这两种情况的分析可以看出,如果只求个数的话,这个算法比较高效。但如果要求打印出序列时,就只能用DP了。
code
class Solution {
public:
/**
* @param nums: The integer array
* @return: The length of LIS (longest increasing subsequence)
*/
int longestIncreasingSubsequence(vector<int> nums) {
// write your code here
int size = nums.size(), i = 0;
vector<int> stack;
if(size <= 0) {
return 0;
}
stack.push_back(nums[0]);
for(i=1; i<size; i++) {
if(stack[stack.size()-1] < nums[i]) {
stack.push_back(nums[i]);
}
else {
int low = 0, high = stack.size()-1, mid = 0;
while(low <= high) {
mid = low + (high - low) / 2;
if(nums[i] > stack[mid]) {
low = mid + 1;
}
else {
high = mid - 1;
}
}
stack[low] = nums[i];
}
}
return stack.size();
}
};
lintcode-76-最长上升子序列的更多相关文章
- LintCode 77: 最长公共子序列
public class Solution { /** * @param A, B: Two string. * @return: the length of the longest common s ...
- 最长回文子序列LCS,最长递增子序列LIS及相互联系
最长公共子序列LCS Lintcode 77. 最长公共子序列 LCS问题是求两个字符串的最长公共子序列 \[ dp[i][j] = \left\{\begin{matrix} & max(d ...
- C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解
版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...
- lintcode:最长公共子序列
题目 最长公共子序列 给出两个字符串,找到最长公共子序列(LCS),返回LCS的长度. 样例 给出"ABCD" 和 "EDCA",这个LCS是 "A& ...
- lintcode:最长上升子序列
题目 最长上升子序列 给定一个整数序列,找到最长上升子序列(LIS),返回LIS的长度. 样例 给出[5,4,1,2,3],这个LIS是[1,2,3],返回 3 给出[4,2,4,5,3,7],这个L ...
- lintcode 77.Longest Common Subsequence(最长公共子序列)、79. Longest Common Substring(最长公共子串)
Longest Common Subsequence最长公共子序列: 每个dp位置表示的是第i.j个字母的最长公共子序列 class Solution { public: int findLength ...
- 2.16 最长递增子序列 LIS
[本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...
- 最长公共子序列LCS
LCS:给出两个序列S1和S2,求出的这两个序列的最大公共部分S3就是就是S1和S2的最长公共子序列了.公共部分 必须是以相同的顺序出现,但是不必要是连续的. LCS具有最优子结构,且满足重叠子问题的 ...
- 【动态规划】【二分】【最长上升子序列】Vijos P1028 魔族密码
题目链接: https://vijos.org/p/1028 题目大意: 给N个字符串(N<=2000),求能组成词链的单词最多有几个. 如果在一个由一个词或多个词组成的表中,除了最后一个以外, ...
- Lintcode--010(最长上升子序列)
给定一个整数序列,找到最长上升子序列(LIS),返回LIS的长度.LIS(longestIncreasingSubsequence) 说明: 最长上升子序列的定义: 最长上升子序列问题是在一个无序的给 ...
随机推荐
- 【PTA 天梯赛】L2-1 分而治之(结构体存边)
分而治之,各个击破是兵家常用的策略之一.在战争中,我们希望首先攻下敌方的部分城市,使其剩余的城市变成孤立无援,然后再分头各个击破.为此参谋部提供了若干打击方案.本题就请你编写程序,判断每个方案的可行性 ...
- Layui上传文件以及数据表格
layui对于一些前端小白来说,例如我,真的非常的好用,不用去花很多很多的心思在前端美化中,并且提高了很大的工作效率.所以建议一些觉得自己前端技术不是很强,但是想让前端美化一点的可以使用layui. ...
- mysql 查询各个阶段所消耗的时间
- 14.2 multiprocessing--多线程
本模块提供了多进程进行共同协同工作的功能.由于Python存在GIL锁,对于多线程来说,这只是部分代码可以使用多CPU的优势,对于想全部使用多CPU的性能,让每一个任务都充分地使用CPU,那么使用多进 ...
- [转]ThinkPHP5 隐藏index.php问题
ThinkPHP5 隐藏index.php问题 Apache,修改.htaccess文件 ----------------------------------------------------- R ...
- 20.2 解析与序列化【JavaScript高级程序设计第三版】
JSON 之所以流行,拥有与JavaScript 类似的语法并不是全部原因.更重要的一个原因是,可以把JSON 数据结构解析为有用的JavaScript 对象.与XML 数据结构要解析成DOM 文档而 ...
- ko绑定----记录
1.绑定变量 globalData = ko.observable({item:{}}); 2.绑定html ko.applyBindings(globalData, document.getElem ...
- Python基本数据类型(一)
我会持续更新.... 字符串类型 字符串定义: 字符串的格式:'字符串', "字符串", """字符串"""字符串一旦被 ...
- 04 mysql 基础三 (进阶)
mysql 基础三 阶段一 mysql 单表查询 1.查询所有记录 select * from department; select * from student; select * from ...
- Git 克隆指定分支代码
git clone 指定分支 拉代码 1.git clone 不指定分支 git clone http://10.1.1.11/service/sz-service.git 2.git clone ...