图论里非常常用的dijkstra,自己加了个路径查找,做个模板吧:

int maxn = ;
struct Edge {
int from,to,dist;
Edge(int u, int v, int d):from(u),to(v),dist(d) {}
};
struct HeapNode {
int d,u;
bool operator < (const HeapNode& rhs) const {
return d > rhs.d;
}
};
struct Dijkstra {
int n,m;
vector<Edge> edges;
vector<int> G[maxn];
bool done[maxn];
int d[maxn];
int p[maxn]; //最短路中的上一条弧
vector<int> path;
void init(int n) {
this->n = n;
for (int i = ; i < n; i++) G[i].clear();
edges.clear();
path.clear();
} void addEdge(int from, int to, int dist) {
edges.push_back(Edge(from,to,dist));
m = edges.size();
G[from].push_back(m-);
} void dijkstra(int s) { //从s点开始
priority_queue<HeapNode> Q;
for (int i = ; i < n; i++) d[i] = INF;
d[s] = ;
memset(done,,sizeof(done));
Q.push((HeapNode) {
,s
});
while (!Q.empty()) {
HeapNode x = Q.top();
Q.pop();
int u = x.u;
if (done[u]) continue;
done[u] = true;
for (int i = ; i < G[u].size(); i++) {
Edge& e = edges[G[u][i]];
if (d[e.to] > d[u] + e.dist) {
d[e.to] = d[u] + e.dist;
p[e.to] = G[u][i];
Q.push((HeapNode) {
d[e.to],e.to
});
}
}
}
}
void findpath(int x,int end) {
path.clear();
path.push_back(x);
findd(x,end);
}
void findd(int x,int end) {
if(x==end)
return;
else {
path.push_back(this->edges[this->p[x]].from);
findd(this->edges[this->p[x]].from,end);
}
}
};

Dijkstra模板 dj斯特拉的更多相关文章

  1. Dijkstra(迪杰斯特拉)源最短路径 小白说明

    源最短路径 小白说明 Dijkstra算法,书上其实说的很简洁,仔细看,仔细思考是会理解的.但要先理解几条引论和推理. 而自己思考的思路在不需要任何推理只从贪心思路出发,和Dijkstra有所不同,但 ...

  2. 最短路径算法—Dijkstra(迪杰斯特拉)算法分析与实现(C/C++)

    Dijkstra算法 ———————————最后更新时间:2011.9.25———————————Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径. ...

  3. c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法

    c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法 图的最短路径的概念: 一位旅客要从城市A到城市B,他希望选择一条途中中转次数最少的路线.假设途中每一站都需要换车,则这个问题反映到图上就是 ...

  4. 最短路之Dijkstra(迪杰斯特拉)

    一般用法: Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法是很有代 ...

  5. HDU-2544 最短路 Dijkstra模板题

    题目链接:https://vjudge.net/problem/HDU-2544 题意: 题目要求找到节点1到节点n之间的一条最短路 分析: Dijkstra模板题 单源最短路径,可以用dijkstr ...

  6. 图解Dijkstra(迪杰斯特拉)算法+代码实现

    简介 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法是很有代表性的 ...

  7. Dijkstra 模板 最短路

    转载请注明出处:http://blog.csdn.net/u012860063?viewmode=contents ------------------------------------------ ...

  8. hdu 2544 hdu 1874 poj 2387 Dijkstra 模板题

    hdu 2544  求点1到点n的最短路  无向图 Sample Input2 1 //结点数 边数1 2 3 //u v w3 31 2 52 3 53 1 20 0 Sample Output32 ...

  9. 单源最短路——Dijkstra模板

    算法思想: 类似最小生成树的贪心算法,从起点 v0 每次新拓展一个距离最小的点,再以这个点为中间点,更新起点到其他点的距离. 算法实现: 需要定义两个一维数组:①vis[ i ] 表示是否从源点到顶点 ...

随机推荐

  1. [译]GLUT教程 - 安装

    Lighthouse3d.com >> GLUT Tutorial >> Basics >> Setup 你需要什么 要用GLUT库开发程序,你可以下载最新版本3. ...

  2. PHP中级面试经历

    资源来自网络:http://www.2cto.com/kf/201304/204749.html 1.用PHP打印出前一天的时间格式是2006-5-10 22:21:21(2分) 2.echo(),p ...

  3. SQL数据完整性

    1.数据的完整性 1. 什么是数据的完整性 保证用户输入的数据保存到数据库中是正确的 2.添加数据完整性 在创建表的时候给表添加约束 3.完整性分类 实体完整性.域完整性.引用完整性 ​ ​ 2.完整 ...

  4. A Year in Computer Vision

    A Year in Computer Vision http://themtank.org/

  5. Oracle oerr工具介绍

    (1)什么是oerr oerr是Oracle提供的在UNIX/Linux上查看Oracle错误的小工具,使用起来非常方便. (2)如何使用 oerr工具位于ORACLE_HOME下面,可以使用whic ...

  6. 编写可维护的JavaScript---事件处理

    在JavaScript应用中事件处理是非常重要的,所有的JavaScript都是通过事件绑定到UI上的. 1. 典型用法 当事件触发的时候,事件对象event会最为回调参数传入到事件处理程序中.eve ...

  7. DB2 SQL Error: SQLCODE = -798, SQLSTATE = 428C9

    DB2 SQL Error: SQLCODE = -798, SQLSTATE = 428C9报错是因为 , 你往设置了ALWAYS自增的列里面插了初始值 . ALWAYS自增设置如下. -- 设置主 ...

  8. MySQL Waiting for table metadata lock的解决方法

    最近需要在某一个表中新增字段,使用Sequel Pro 或者Navicat工具都会出现程序没有反应,使用 show processlist 查看,满屏都是 Waiting for table meta ...

  9. 系统编程.py(多进程与多线程干货)

    1.并发与并行* 多个任务轮换在CPU上跑叫并发* 多个任务在多个CPU上跑,没有交替执行的* 状态叫并行.通常情况下都是并发,即使是多核.* 而控制进程先执行谁后执行谁通过操作系统的调度算法.目前已 ...

  10. 搞笑入群二维码在线生成源码 php图片合成并添加文字水印

    在凤凰网看到一篇文章:微信群二维码也能“整人”,99%的好友会中招!感觉挺好玩,所以自己也想做一个! 冷静分析