清北学堂(2019 5 1) part 4
今天讲数论
1.进制问题(将n转换成k进制数):
1.方法:短除法
将n/k,保存,将商当做新的n,将余数保存,直到商为0,将余数(包括0),倒序输出,即得n的k进制数
2.关于高精四则运算(我本以为不用怎么整的):
举个加和乘的例子...
众所周知,a+b problem是最简单的红题,再加个*也无伤大雅,代码如下(没文件头):
int main(){
int a,b;
cin>>a>>b;
cout<<a*b;
return ;
}
直到你加了这些东西:
#include<bits/stdc++.h>
using namespace std;
struct nu{
int a[];
int l;
nu(){
l=;
memset(a,,sizeof(a));
}
friend istream& operator>>(istream &cin,nu &x){ //意思是:重载>>(用于cin,读到x里面)
static char s[];
cin>>s;
int l=strlen(s);
for(int i=;i<=l;i++)
x.a[i]=s[l-i-]-'';
x.l=l;
return cin;
}
friend ostream& operator<<(ostream &cout,const nu &x){ //与上面大同,多了个const,在于使x值在输出前后值相同
for(int i=x.l-;i>=;i--)
cout<<x.a[i];
}
};
nu operator+(const nu &x,const nu &y){ //重载+
nu ans;
int len=max(x.l,y.l);
for(int i=;i<len;i++)
ans.a[i]+=x.a[i]+y.a[i];
for(int i=;i<len;i++){
if(ans.a[i]>=){
int now=ans.a[i]/;
ans.a[i+]+=now;
ans.a[i]%=;
}
while(ans.a[len+]) len++;
}
ans.l=len;
return ans;
}
nu operator*(const nu &x,const nu &y){ //重载*用了非常简单而经典的高精算法
nu ans;
for(int i=;i<x.l;i++)
for(int j=;j<y.l;j++)
ans.a[i+j]+=x.a[i]*y.a[j];
ans.l=x.l+y.l;
for(int i=;i<ans.l;i++){
ans.a[i+]+=ans.a[i]/;
ans.a[i]%=;
}
while(ans.l>&&!(ans.a[ans.l]))
ans.l--;
ans.l++;
return ans;
}
int main(){
nu a,b;
cin>>a>>b;
cout<<a*b;
return ;
}
6-9行是构造函数,用于memset
10-22是重载cin与cout,背过就好
加const的原因是进行运算的值由符号返回,而从不是变量本身,所以没有赋值的话不能改变变量的值,也更方便电脑理解,可以看到stl里面好多函数用了const
至于&符号,用因如下:
每次用函数运算时,每个函数形如 f(int n),都要把用的变量“n”的值拷贝一份进行运算,如果引用数组就更慢,还更占内存,用了&符号意在免去拷贝操作,直接引用其值,
(反正有了const不用怕数值变化)这就算一个优化
后面一直到主函数之前都是重载运算符
3.关于素数(又是各种筛法)
粘下模板:
1.埃氏筛:
#include<bits/stdc++.h>
using namespace std;
bool no[]={,};
int pri[];
int tot;
inline void p(int t){
for(int i=;i<=t;i++)
if(!no[i]){
pri[++tot]=i;
for(int j=i+i;j<=t;j+=i)
no[j]=;
}
}
int n;
int main(){
scanf("%d",&n);
p(n);
for(int i=;i<=tot;i++)printf("%d\n",pri[i]);
return ;
}
欧拉筛(线性筛):
#include<bits/stdc++.h>
using namespace std;
bool no[];
int pri[];
int tot;
int n;
inline void p(int n){
for(int i=;i<=n;i++){
if(!no[i])
pri[++tot]=i;
for(int j=;j<=n&&i*pri[j]<=n;j++){
no[i*pri[j]]=;
if(!(i%pri[j])) break;
}
}
}
int main(){
scanf("%d",&n);
p(n);
for(int i=;i<=tot;i++)printf("%d\n",pri[i]);
return ;
}
3.exgcd:
#include<bits/stdc++.h>
using namespace std;
int a,b,x,y;
inline int exgcd(int a,int b,int &x,int &y){ //利用性质gcd(a,b)=gcd(b,a%b)
if(!b){
x=;
y=;
return a;
}int g=exgcd(b,a%b,x,y);
int t=x;
x=y;
y=(t-(a/b)*x);
return g;
}
int main(){
cin>>a>>b;
exgcd(a,b,x,y);
if(x<) x+=b;
cout<<x;
return ;
}
练多了不解释...
下午考试了..我..应该..大概不会爆零
清北学堂(2019 5 1) part 4的更多相关文章
- 清北学堂2019.8.10 & 清北学堂2019.8.11 & 清北学堂2019.8.12
Day 5 杨思祺(YOUSIKI) 今天的难度逐渐上升,我也没做什么笔记 开始口胡正解 今天的主要内容是最小生成树,树上倍增和树链剖分 最小生成树 Prim 将所有点分为两个集合,已经和点 1 连通 ...
- 清北学堂2019.7.18 & 清北学堂2019.7.19
Day 6 钟皓曦 经典题目:石子合并 可以合并任意两堆,代价为数量的异或(^)和 f[s]把s的二进制所对应石子合并成一堆所花代价 枚举s的子集 #include<iostream> u ...
- 清北学堂2017NOIP冬令营入学测试P4745 B’s problem(b)
清北学堂2017NOIP冬令营入学测试 P4745 B's problem(b) 时间: 1000ms / 空间: 655360KiB / Java类名: Main 背景 冬令营入学测试 描述 题目描 ...
- 清北学堂2017NOIP冬令营入学测试 P4744 A’s problem(a)
清北学堂2017NOIP冬令营入学测试 P4744 A's problem(a) 时间: 1000ms / 空间: 655360KiB / Java类名: Main 背景 冬令营入学测试题,每三天结算 ...
- 济南清北学堂游记 Day 1.
快住手!这根本不是暴力! 刷了一整天的题就是了..上午三道题的画风还算挺正常,估计是第一天,给点水题做做算了.. rqy大佬AK了上午的比赛! 当时我t2暴力写挂,还以为需要用啥奇怪的算法,后来发现, ...
- 清明培训 清北学堂 DAY1
今天是李昊老师的讲授~~ 总结了一下今天的内容: 1.高精度算法 (1) 高精度加法 思路:模拟竖式运算 注意:进位 优化:压位 程序代码: #include<iostream>#in ...
- 7月清北学堂培训 Day 3
今天是丁明朔老师的讲授~ 数据结构 绪论 下面是天天见的: 栈,队列: 堆: 并查集: 树状数组: 线段树: 平衡树: 下面是不常见的: 主席树: 树链剖分: 树套树: 下面是清北学堂课程表里的: S ...
- <知识整理>2019清北学堂提高储备D2
简单数据结构: 一.二叉搜索树 1.前置技能: n/1+n/2+……+n/n=O(n log n) (本天复杂度常涉及) 2.入门题引入: N<=100000. 这里多了一个删除的操作,因此要 ...
- <知识整理>2019清北学堂提高储备D3
全天动态规划入门到入坑... 一.总概: 动态规划是指解最优化问题的一类算法,考察方式灵活,也常是NOIP难题级别.先明确动态规划里的一些概念: 状态:可看做用动态规划求解问题时操作的对象. 边界条件 ...
- 清北学堂(2019 4 28 ) part 1
今天主要用来铺路,打基础 枚举 没什么具体算法讲究,但要考虑更优的暴力枚举方法,例如回文质数,有以下几种思路: 1.挨个枚举自然数,再一起判断是否是回文数和质数,然而一看就不是最优 2.先枚举质数再判 ...
随机推荐
- fecha的使用
项目中时间的处理是无法避免的,时间的处理方式有很多,这里介绍一下fecha的使用 fecha是一个日期格式化和解析的js库,它提供了强大的日期处理功能,功能强大且只有2k大小.安装方式简单,只需要 n ...
- trait特性
1.trait特性可以和特化或者偏特化结合. 2.trait可以和类型转换结合.
- springboot整合Ehcache
首先引入maven包: <dependency> <groupId>org.springframework.boot</groupId> <artifactI ...
- 3.5.基于STC89C52+MC20的短信远程控制开关LCD1602显示
需要准备的硬件 MC20开发板 1个 https://item.taobao.com/item.htm?id=562661881042 GSM/GPRS天线 1根 https://item.taoba ...
- 3.1 使用STC89C52控制MC20拨打电话
需要准备的硬件 MC20开发板 1个 https://item.taobao.com/item.htm?id=562661881042 GSM/GPRS天线 1根 https://item.taoba ...
- github代码托管
下载github客户端软件 1) 官网下载help.github.com 2) 百度搜索,一般用于windows7以前的系统 安装github软件 按照软件提示安装即可.不过,博主倾向使用命令行工 ...
- 递归函数(Day15)
一.递归的定义 在一个函数里面再调用这个函数本身 递归特性 1.必须有一个明确的结束条件 2.每次进入更深一层递归时,问题规模相比于上一次的递归有所减少 二.递归的应用 1.递归函数与三层菜单 men ...
- open函数and文件处理
一 介绍 计算机系统分为:计算机硬件,操作系统,应用程序三部分 我们用python或其他语言编写的应用程序若想要把数据永久保存下来,必须要保存于硬盘中,这就涉及到应用程序要操作硬件,应用程序是无法操作 ...
- 【转】Python爬虫(6)_scrapy框架
官网链接:https://docs.scrapy.org/en/latest/topics/architecture.html 性能相关 在编写爬虫时,性能的消耗主要在IO请求中,当单进程单线程模式下 ...
- (C#)ListView双击Item事件
/// <summary> /// 双击选择播放列表项进行播放 /// </summary> /// <param name="sender"> ...