GCD Again

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2257    Accepted Submission(s): 908

Problem Description
Do you have spent some time to think and try to solve those unsolved problem after one ACM contest?
No? Oh, you must do this when you want to become a "Big Cattle".
Now you will find that this problem is so familiar:
The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little more difficult problem: 
Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.
This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.
Good Luck!
 
Input
Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
 
Output
For each integers N you should output the number of integers M in one line, and with one line of output for each line in input. 
 
Sample Input
2
4
0
 
Sample Output
0
1
 
Author
lcy
 
Source
 
Recommend
lcy   |   We have carefully selected several similar problems for you:  1788 1695 1573 1905 1299 

模板题:

 //0MS    200K    399 B    G++
#include<stdio.h>
int euler(int n)
{
int ret=;
for(int i=;i*i<=n;i++){
if(n%i==){
n/=i;ret*=i-;
while(n%i==){
n/=i;ret*=i;
}
}
}
if(n>) ret*=n-;
return ret;
}
int main(void)
{
int n;
while(scanf("%d",&n),n)
{
printf("%d\n",n-euler(n)-);
}
return ;
}

hdu 1787 GCD Again (欧拉函数)的更多相关文章

  1. HDU 1787 GCD Again(欧拉函数,水题)

    GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  2. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  3. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  4. hdu 1695 GCD(欧拉函数+容斥)

    Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...

  5. HDU 2588 GCD(欧拉函数)

    GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  6. 题解报告:hdu 2588 GCD(欧拉函数)

    Description The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written ...

  7. hdu 1695 GCD (欧拉函数、容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  8. hdu 4983 Goffi and GCD(欧拉函数)

    Problem Description Goffi is doing his math homework and he finds an equality on his text book: gcd( ...

  9. (hdu step 7.2.2)GCD Again(欧拉函数的简单应用——求[1,n)中与n不互质的元素的个数)

    题目: GCD Again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...

随机推荐

  1. Python实现多属性排序

    Python实现多属性排序 多属性排序:假如某对象有n个属性,那么先按某规则对属性a进行排序,在属性a相等的情况下再按某规则对属性b进行排序,以此类推. 现有对象Student: class Stud ...

  2. 误删 EhCache 中的数据?

    最近遇到一个问题:在使用ehcache时,通过CacheManager.getCache(chachename).get(key),获取相应的缓存内对象(当时这个对象是个list), 有个同事写个方法 ...

  3. spring-boot整合ehcache实现缓存机制

    EhCache 是一个纯Java的进程内缓存框架,具有快速.精干等特点,是Hibernate中默认的CacheProvider. ehcache提供了多种缓存策略,主要分为内存和磁盘两级,所以无需担心 ...

  4. python三大神器之生成器

    生成器Generator: 本质:迭代器(所以自带了__iter__方法和__next__方法,不需要我们去实现) 特点:惰性运算,开发者自定义 在python中有三种方法来获取生成器: 1.通过生成 ...

  5. UVA10474 Where is the Marble?【排序】

    参考:https://blog.csdn.net/q547550831/article/details/51326321 #include <iostream> #include < ...

  6. python基础之IO模型

    IO模型分类 五种IO Model blocking IO 阻塞IO nonblocking IO 非阻塞IO IO multiplexing IO多路复用 signal driven IO 信号驱动 ...

  7. linux挂载命令mount及U盘、移动硬盘的挂载

    一.mount的命令格式是(注意mount只能在root权限下运行) mount dervice dir dervice是要挂载的设备,dir是挂载点 二.查看当前磁盘列表的设备 fdisk -l 显 ...

  8. app:showAsAction 和android:showAsAction

    app:showAsAction 它有三个可选项1.always:总是显示在界面上2.never:不显示在界面上,只让出现在右边的三个点中3.ifRoom:如果有位置才显示,不然就出现在右边的三个点中 ...

  9. 实用脚本 1 -- 安装Ctags

    Ctags是vim下方便代码阅读的工具,一般VIM中已经默认安装了Ctags,它可以帮助程序员很容易地浏览源代码. 1.如果系统中没有此工具用如下方法安装:    到ctags官网下载源码,解压后   ...

  10. CC3100BoosterPack和CC31XXEMUBOOST板子的测试

    1. 先测试右边的CC3100BoosterPack,测试发现LDO坏了,无法输出3.3V,所以只能用左边的板子供电. 2. 插上CC31XXEMUBOOST板子的J1,两个板子插在一起,等待驱动安装 ...