SPOJ Distinct Substrings(后缀数组求不同子串个数,好题)
DISUBSTR - Distinct Substrings
Given a string, we need to find the total number of its distinct substrings.
Input
T- number of test cases. T<=20;
Each test case consists of one string, whose length is <= 1000
Output
For each test case output one number saying the number of distinct substrings.
Example
Sample Input:
2
CCCCC
ABABA
Sample Output:
5
9
Explanation for the testcase with string ABABA:
len=1 : A,B
len=2 : AB,BA
len=3 : ABA,BAB
len=4 : ABAB,BABA
len=5 : ABABA
Thus, total number of distinct substrings is 9.
题目链接:SPOJ DISUBSTR
一开始想用字典树,结果静态建树的Trie超时了(懒的写动态指针版……)真相是用后缀数组做的,因为每一个后缀的贡献原本为其长度,原本总贡献为$(len + 1) * len / 2$,但由于一些串重复,我们要减掉,再想一想,这些重复的是后缀的前缀,也就是$Suffix(x)$和$Suffix(y)$的公共前缀$LCP(x,y)$,但是x与y如何确定才能准确不遗漏地算出这些重复的串呢?按字典序排,然后height数组就是基于字典序排序的后缀,因此把所有height值减掉就好了。不过似乎有人用指针写的Trie过了,果然指针除了爆内存的风险,速度确实快啊。
想了一下用后缀数组只要$O(Nlog_{2}N)$,而字典树至少$O(N*N)$,果然不是一个档次……
代码:
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <bitset>
#include <string>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define fin(name) freopen(name,"r",stdin)
#define fout(name) freopen(name,"w",stdout)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 1010;
int wa[N], wb[N], cnt[N], sa[N];
int ran[N], height[N];
char s[N]; inline int cmp(int r[], int a, int b, int d)
{
return r[a] == r[b] && r[a + d] == r[b + d];
}
void DA(int n, int m)
{
int i;
int *x = wa, *y = wb;
for (i = 0; i < m; ++i)
cnt[i] = 0;
for (i = 0; i < n; ++i)
++cnt[x[i] = s[i]];
for (i = 1; i < m; ++i)
cnt[i] += cnt[i - 1];
for (i = n - 1; i >= 0; --i)
sa[--cnt[x[i]]] = i;
for (int k = 1; k <= n; k <<= 1)
{
int p = 0;
for (i = n - k; i < n; ++i)
y[p++] = i;
for (i = 0; i < n; ++i)
if (sa[i] >= k)
y[p++] = sa[i] - k;
for (i = 0; i < m; ++i)
cnt[i] = 0;
for (i = 0; i < n; ++i)
++cnt[x[y[i]]];
for (i = 1; i < m; ++i)
cnt[i] += cnt[i - 1];
for (i = n - 1; i >= 0; --i)
sa[--cnt[x[y[i]]]] = y[i];
swap(x, y);
x[sa[0]] = 0;
p = 1;
for (i = 1; i < n; ++i)
x[sa[i]] = cmp(y, sa[i - 1], sa[i], k) ? p - 1 : p++;
m = p;
if (p >= n)
break;
}
}
void getght(int n)
{
int i, k = 0;
for (i = 1; i <= n; ++i)
ran[sa[i]] = i;
for (i = 0; i < n; ++i)
{
if (k)
--k;
int j = sa[ran[i] - 1];
while (s[i + k] == s[j + k])
++k;
height[ran[i]] = k;
}
}
int main(void)
{
int T, i;
scanf("%d", &T);
while (T--)
{
scanf("%s", s);
int len = strlen(s);
DA(len + 1, *max_element(s, s + len) + 1);
getght(len);
int ans = (len + 1) * len >> 1;
for (i = 1; i <= len; ++i)
ans -= height[i];
printf("%d\n", ans);
}
return 0;
}
SPOJ Distinct Substrings(后缀数组求不同子串个数,好题)的更多相关文章
- spoj 694. Distinct Substrings 后缀数组求不同子串的个数
题目链接:http://www.spoj.com/problems/DISUBSTR/ 思路: 每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数.如果所有的后缀按照su ...
- spoj Distinct Substrings 后缀数组
给定一个字符串,求不相同的子串的个数. 假如给字符串“ABA";排列的子串可能: A B A AB BA ABA 共3*(3+1)/2=6种; 后缀数组表示时: A ABA BA 对于A和 ...
- SPOJ(后缀数组求不同子串个数)
DISUBSTR - Distinct Substrings Given a string, we need to find the total number of its distinct subs ...
- SPOJ - SUBST1 New Distinct Substrings —— 后缀数组 单个字符串的子串个数
题目链接:https://vjudge.net/problem/SPOJ-SUBST1 SUBST1 - New Distinct Substrings #suffix-array-8 Given a ...
- SPOJ 694 || 705 Distinct Substrings ( 后缀数组 && 不同子串的个数 )
题意 : 对于给出的串,输出其不同长度的子串的种类数 分析 : 有一个事实就是每一个子串必定是某一个后缀的前缀,换句话说就是每一个后缀的的每一个前缀都代表着一个子串,那么如何在这么多子串or后缀的前缀 ...
- SPOJ SUBST1 New Distinct Substrings(后缀数组 本质不同子串个数)题解
题意: 问给定串有多少本质不同的子串? 思路: 子串必是某一后缀的前缀,假如是某一后缀\(sa[k]\),那么会有\(n - sa[k] + 1\)个前缀,但是其中有\(height[k]\)个和上一 ...
- SPOJ - DISUBSTR Distinct Substrings (后缀数组)
Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...
- 【SPOJ – SUBST1】New Distinct Substrings 后缀数组
New Distinct Substrings 题意 给出T个字符串,问每个字符串有多少个不同的子串. 思路 字符串所有子串,可以看做由所有后缀的前缀组成. 按照后缀排序,遍历后缀,每次新增的前缀就是 ...
- SPOJ DISUBSTR Distinct Substrings 后缀数组
题意:统计母串中包含多少不同的子串 然后这是09年论文<后缀数组——处理字符串的有力工具>中有介绍 公式如下: 原理就是加上新的,减去重的,这题是因为打多校才补的,只能说我是个垃圾 #in ...
随机推荐
- webpack和sass功能简介
1.webpack webpack 是一个打包工具,为什么需要打包?因为有的人的脚本开发语言可能是 CoffeeScript 或者是 TypeScript,样式开发工具可能是 Less 或者 Sass ...
- PHP接收http请求头信息
1.PHP 自带函数 getallheaders() 目前 getallheaders() 只能用于 apache 中.如果想在 nginx 中也能使用,可以使用自定义函数. foreach (get ...
- VSCode插件整理
VSCode插件整理 VSCode插件整理 官网地址 vscode常用配置(User Settings文件) 基本插件 前端插件 VUE部分 python MarkDown部分 连接Linux 本地与 ...
- zabbix配置报警媒介-用户-动作-邮件脚本触发mailx邮件报警
2018-09-16更新,新版本zabbix不需要使用脚本发送邮件,在zabbix web界面直接配置就可以 配置邮件参数,测试发送邮件 确认安装相关服务,centos7默认安装 [root@VM_1 ...
- Go web表单验证
开发Web的一个原则就是,不能信任用户输入的任何信息,所以验证和过滤用户的输入信息就变得非常重要 必填字段 if len(r.Form["username"][0])==0{ // ...
- JAVA 泛型方法<T>
public static void main(String[] args) throws Exception { String[] arr = new String[]{"1", ...
- HBase配置和使用
参考官方文档 整体实现框架 图1 以下几个为组成部件 21892 HMaster 22028 HRegionServer 21553 QuorumPeerMain 2366 NameNode 2539 ...
- BFS 队列
Plague Inc. is a famous game, which player develop virus to ruin the world. JSZKC wants to model thi ...
- shell eval命令使用
eval命令将会首先扫描命令行进行所有的置换,然后再执行该命令. 该命令适用于那些一次扫描无法实现其功能的变量.该命令对变量进行两次扫描. 这些需要进行两次扫描的变量有时被称为复杂变量.不过这些变量本 ...
- web框架与爬虫
所有的web框架 http://www.cnblogs.com/wupeiqi/articles/5341480.html 爬虫技术 http://www.cnblogs.com/wupeiqi/ar ...