很多学习算法的性能都差不多,关键不是使用哪种学习算法,而是你能得到多少数据量和应用这些学习算法的技巧(如选择什么特征向量,如何选择正则化参数等)

SVM在解决非线性问题上提供了强大的方法。

logistic regression的h(x)

如果y=1,则我们希望h(x)接近于1,即希望θTx要远远大于0

logistic regression的cost function

当y=1时的cost function如左图,用粉红色的两段直线近似的代替cost function,记为cost1(z)(y=1)

当y=0时的cost function如右图,用粉红色的两段直线近似的代替cost function,记为cost0(z)(y=0)

SVM的cost function

我们用cost1(z)(y=1)与cost0(z)(y=0)来代替logistic regression cost function(我们将外面的-移到了里面)中对应的项,然后将1/m去掉(因为cost function整体乘以一个常数求最小值对于取最小值的那个变量来说是不变的),这样我们用A+λB来表示cost function(A是前面的cost term,B是后面的正则化term),在SVM中,我们用CA+B来表示cost function(当C=1/λ时,取最小值的θ与logistic regression取最小值时的θ是一至的),这样我们就通过一个变量(C)来对两个term进行权衡(bias 与variance之间的权衡)。

最后,我们得出在SVM中的cost function如最下面的那个式子。

SVM的预测函数(hypothesis)

不同于logistic regression用来预测概率(0-1之间),在SVM中的hypothesis是直接对结果进行预测,如上图所示,当θTx>=0时,hypothesis = 1;

SVM: 相对于logistic regression而言SVM的 cost function与hypothesis的更多相关文章

  1. logistic regression与SVM

    Logistic模型和SVM都是用于二分类,现在大概说一下两者的区别 ① 寻找最优超平面的方法不同 形象点说,Logistic模型找的那个超平面,是尽量让所有点都远离它,而SVM寻找的那个超平面,是只 ...

  2. Probabilistic SVM 与 Kernel Logistic Regression(KLR)

    本篇讲的是SVM与logistic regression的关系. (一) SVM算法概论 首先我们从头梳理一下SVM(一般情况下,SVM指的是soft-margin SVM)这个算法. 这个算法要实现 ...

  3. Linear regression with one variable - Cost function

    摘要: 本文是吴恩达 (Andrew Ng)老师<机器学习>课程,第二章<单变量线性回归>中第7课时<代价函数>的视频原文字幕.为本人在视频学习过程中逐字逐句记录下 ...

  4. Linear regression with one variable - Cost function intuition I

    摘要: 本文是吴恩达 (Andrew Ng)老师<机器学习>课程,第二章<单变量线性回归>中第8课时<代价函数的直观认识 - 1>的视频原文字幕.为本人在视频学习过 ...

  5. [Scikit-learn] 1.1 Generalized Linear Models - Logistic regression & Softmax

    二分类:Logistic regression 多分类:Softmax分类函数 对于损失函数,我们求其最小值, 对于似然函数,我们求其最大值. Logistic是loss function,即: 在逻 ...

  6. Machine Learning - 第3周(Logistic Regression、Regularization)

    Logistic regression is a method for classifying data into discrete outcomes. For example, we might u ...

  7. CheeseZH: Stanford University: Machine Learning Ex3: Multiclass Logistic Regression and Neural Network Prediction

    Handwritten digits recognition (0-9) Multi-class Logistic Regression 1. Vectorizing Logistic Regress ...

  8. logistic regression中的cost function选择

    一般的线性回归使用的cost function为: 但由于logistic function: 本身非凸函数(convex function), 如果直接使用线性回归的cost function的话, ...

  9. Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization

    原文:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

随机推荐

  1. Python3中strip()、lstrip()、rstrip()用法详解

    Python中有三个去除头尾字符.空白符的函数,它们依次为: strip: 用来去除头尾字符.空白符(包括\n.\r.\t.' ',即:换行.回车.制表符.空格) lstrip:用来去除开头字符.空白 ...

  2. 算法浅谈之DP悬线法

    悬线法 用途 解决给定矩阵中满足条件的最大子矩阵 做法 用一条线(横竖貌似都行)左右移动直到不满足约束条件或者到达边界 定义 \(left[i][j]\):代表从\((i,j)\)能到达的最左位置 \ ...

  3. CPU使用率过高问题定位

    (1)top 命令 ->查询出CPU使用率最高的 PID编号. (2)top -H p PID编号 ->能查询出所有线程的CPU使用率的列表(线程编号也在PID列). (3)jstack ...

  4. 【LEETCODE】48、867. Transpose Matrix

    package y2019.Algorithm.array; /** * @ProjectName: cutter-point * @Package: y2019.Algorithm.array * ...

  5. go 语言学习 ---解析xml

    实例1 //main package main import ( "bytes" "encoding/xml" "fmt" "io ...

  6. logback 生成 catalina.base_IS_UNDEFINED 问题处理 &如何在eclipse/idea中添加VM参数

    1>在Eclipse中里设置  windows->preferences->Java->Installed JRES->edit->Default VM Argum ...

  7. K8S conul部署

    官网有Helm方式的安装文档(https://www.consul.io/docs/platform/k8s/index.html) 一,准备工作: 1,k8s环境 2,nfs服务器 二,创建PV n ...

  8. CSS 各种形状

    制作圆形: 要使用CSS来制作一个圆形,我们需要一个div,被给它设置一个ID <div id="circle"></div>  圆形在设置CSS时要设置宽 ...

  9. Java隐式类型转换和强制类型转换

    一.强制类型转换 char 和 整型之间的类型转换 char a7 = 'a'; System.out.println(a7); System.out.println( (int)a7 ); Syst ...

  10. opencv 源码分析 CUDA可分离滤波器设计 ( 发现OpenCV的cuda真TM慢 )

    1. 主函数 void SeparableLinearFilter::apply(InputArray _src, OutputArray _dst, Stream& _stream) { G ...