Spark Streaming应用也是Spark应用,Spark Streaming生成的DStream最终也是会转化成RDD,然后进行RDD的计算,所以Spark Streaming最终的计算是RDD的计算,那么Spark Streaming的原理当然也包含了Spark应用通用的原理。Spark Streaming作为实时计算的技术,和其他的实时计算技术(比如Storm)不太一样,我们可以将Spark Streaming理解为micro-batch模式的实时计算,也就是说Spark Streaming本质是批处理,就是这个批处理之间的时间间隔是非常的小,这个时间间隔最小是500ms,基本上可以适合企业中80%的实时计算场景。
在实时计算的步骤中,Spark Streaming当然也包含了实时接收数据过程、数据的transformation过程以及数据结果输出过程三个最基本的过程。Spark Streaming在数据接收的部分包括基于Receiver模式以及Direct模式(Kafka Direct),接下来详细的讲解下基于Receiver模式的Spark Streaming应用的原理。
当我们使用spark-submit提交一个Spark Streaming应用的时候,向集群申请到资源并且初始化需要的Executor后,Spark Streaming应用的执行过程包括两部分:一个是StreamingContext的初始化,一个是Spark Streaming应用对Receiver实时接收到的数据的实时计算。以下分别介绍
StreamingContext的初始化:
StreamingContext的初始化的时候,会初始化DStreamGraph和JobScheduler两个模块,其中DStreamGraph包含了InputDStream和OutputDStream两个DStream,InputDStream中包含了Receiver信息,OutputDStream包含了最终结果的输出信息,这两个DStream之间就是一系列的业务Transformations。JobScheduler中包含了JobGenerator和ReceiverTracker,JobGenerator中有一个定时器,用于定时的触发并生成批次定时任务,ReceiverTracker用于跟踪Receiver接收的数据,当ReceiverTracker初始化的时候会从DStreamGraph中InputDStream拿到Receiver,然后在一个Executor上启动这个Receiver,至此StreamingContext的初始化完成
Spark Streaming应用对Receiver实时接收到的数据的实时计算
Receiver将实时接收到的数据存储在Executor的内存中,由BlockManager管理,存储完数据后会告诉ReceiverTracker数据块存储的位置,方便ReceiverTracker跟踪定位;当我们设定的batch interval时间到了的时候,JobGenerator就会告诉ReceiverTracker定位所有这个batch interval收集到的数据,并且生成一个定时任务,这个定时任务就会根据ReceiverTracker定位到的所有的数据块生成一个BlockRDD(这个是RDD链中的第一个需要执行的),并且根据InputDStream和OutputDStream两个DStream之间的一系列的业务Transformations生成RDD链,最后生成RDD DAG,进行RDD的计算任务的提交,这个时候就来到了Spark RDD的任务提交的原理的,可以参考Spark Core中的内容

注意:上面的原理是讲解基于Receiver模式的,还有比如Kafka Direct模式在数据接收的地方和这个稍有不同,其他的数据处理流程是一样

Spark Streaming的原理的更多相关文章

  1. Spark 以及 spark streaming 核心原理及实践

    收录待用,修改转载已取得腾讯云授权 作者 | 蒋专 蒋专,现CDG事业群社交与效果广告部微信广告中心业务逻辑组员工,负责广告系统后台开发,2012年上海同济大学软件学院本科毕业,曾在百度凤巢工作三年, ...

  2. Spark Streaming初步使用以及工作原理详解

    在大数据的各种框架中,hadoop无疑是大数据的主流,但是随着电商企业的发展,hadoop只适用于一些离线数据的处理,无法应对一些实时数据的处理分析,我们需要一些实时计算框架来分析数据.因此出现了很多 ...

  3. Spark生态以及原理

    spark 生态及运行原理 Spark 特点 运行速度快 => Spark拥有DAG执行引擎,支持在内存中对数据进行迭代计算.官方提供的数据表明,如果数据由磁盘读取,速度是Hadoop MapR ...

  4. 新闻实时分析系统 Spark Streaming实时数据分析

    1.Spark Streaming功能介绍1)定义Spark Streaming is an extension of the core Spark API that enables scalable ...

  5. 新闻网大数据实时分析可视化系统项目——19、Spark Streaming实时数据分析

    1.Spark Streaming功能介绍 1)定义 Spark Streaming is an extension of the core Spark API that enables scalab ...

  6. Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spa ...

  7. Spark Streaming fileStream实现原理

    fileStream是Spark Streaming Basic Source的一种,用于“近实时”地分析HDFS(或者与HDFS API兼容的文件系统)指定目录(假设:dataDirectory)中 ...

  8. Spark Streaming简介及原理

    简介: SparkStreaming是一套框架. SparkStreaming是Spark核心API的一个扩展,可以实现高吞吐量的,具备容错机制的实时流数据处理. 支持多种数据源获取数据: Spark ...

  9. .Spark Streaming(上)--实时流计算Spark Streaming原理介

    Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍 http://www.cnblogs.com/shishanyuan/p/474 ...

随机推荐

  1. LeetCode 331. 验证二叉树的前序序列化(Verify Preorder Serialization of a Binary Tree) 27

    331. 验证二叉树的前序序列化 331. Verify Preorder Serialization of a Binary Tree 题目描述 每日一算法2019/5/30Day 27LeetCo ...

  2. Java基础之(四)HashMap(jdk10)

    JDK1.7以前的HashMap jdk1.7中,当冲突时,在冲突的地址上生成一个链表,将冲突的元素的key,通过equals进行比较,相同即覆盖,不同则添加到链表上,此时如果链表过长,效率就会大大降 ...

  3. 使用guava cache在本地缓存热点数据

    某些热点数据在短时间内可能会被成千上万次访问,所以除了放在redis之外,还可以放在本地内存,也就是JVM的内存中. 我们可以使用google的guava cache组件实现本地缓存,之所以选择gua ...

  4. 关于st表

    #include<cstdio> #include<iostream> #include<cmath> #include<cctype> #includ ...

  5. input和while循环——Python编程从入门到实践

    input( ) input()函数:让程序运行暂停,等待用户输入. message = input('Tell me something, and I will repeat it back to ...

  6. caurina缓动类

    一.简单的缓动 一个实例名为box的正方体,开始alpha为0.5,在两秒内移动到x:300 y:100的位置,alpha变为1.import caurina.transitions.Tweener; ...

  7. vue使用基础

    1. 首先下载node.js安装 下载地址:https://nodejs.org/en/download/ 2. 安装vue脚手架 在cmd命令里面输入 npm install -g @vue/cli ...

  8. Future Failure CodeForces - 838C (博弈论,子集卷积)

    大意: 两人轮流操作一个长$n$, 只含前$k$种小写字母的串, 每次操作删除一个字符或者将整个串重排, 每次操作后得到的串不能和之前出现过的串相同, 求多少种串能使先手必胜. 找下规律发现$n$为奇 ...

  9. 宽度学习(Broad Learning System)

    宽度学习(Broad Learning System) 2018-09-27 19:58:01 颹蕭蕭 阅读数 10498  收藏 文章标签: 宽度学习BLBLS机器学习陈俊龙 更多 分类专栏: 机器 ...

  10. NetCore踩坑记1、 一块网卡引发的血案

    公司的项目架构演进,我们也趁机尝试迁移到netcore,系列随笔讲记录我们的踩坑和填坑记录. HttpClient不行? 这是我们第一次尝试netcore 简要介绍环境 netcore2.2+aspn ...