Pandas | 13 索引和选择数据
Pandas现在支持三种类型的多轴索引;
| 编号 | 索引 | 描述 |
|---|---|---|
| 1 | .loc() |
基于标签 |
| 2 | .iloc() |
基于整数 |
| 3 | .ix() |
基于标签和整数 |
.loc()
Pandas提供了各种方法来完成基于标签的索引。 切片时,也包括起始边界。整数是有效的标签,但它们是指标签而不是位置。
.loc()具有多种访问方式,如 -
- 单个标量标签
- 标签列表
- 切片对象
- 一个布尔数组
loc需要两个单/列表/范围运算符,用","分隔。第一个表示行,第二个表示列。
示例1
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(8, 4),
index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D'])
print(df)
print('\n') print (df.loc[:,'A'])
输出结果:
A B C D
a 0.128933 1.113168 -2.908401 0.825420
b -1.386837 0.757495 1.632173 0.293825
c -0.131808 -1.372547 -0.623156 -0.090892
d 0.849492 -0.065772 -1.255859 2.891958
e 0.515384 0.781924 -0.816875 0.476188
f 1.962588 1.220072 -0.112463 -1.108805
g -0.893393 -0.346143 -0.757856 -0.871637
h -1.307739 -0.263241 -1.898776 0.621455
a 0.128933
b -1.386837
c -0.131808
d 0.849492
e 0.515384
f 1.962588
g -0.893393
h -1.307739
Name: A, dtype: float64
示例2
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(8, 4),
index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D'])
print (df.loc[:,['A','C']])
输出结果:
A C
a -0.529735 -1.067299
b -2.230089 -1.798575
c 0.685852 0.333387
d 1.061853 0.131853
e 0.990459 0.189966
f 0.057314 -0.370055
g 0.453960 -0.624419
h 0.666668 -0.433971
示例3
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(8, 4),
index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D'])
print (df.loc[['a','b','f','h'],['A','C']])
输出结果:
A C
a -1.959731 0.720956
b 1.318976 0.199987
f -1.117735 -0.181116
h -0.147029 0.027369
示例4
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(8, 4),
index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D'])
print (df.loc['a':'h']) # 没有写列标签,就将所有的列全部输出
输出结果:
A B C D
a 1.556186 1.765712 1.060657 0.810279
b 1.377965 -0.183283 -0.224379 0.963105
c -0.530016 0.167183 -0.066459 0.074198
d -1.515189 -1.453529 -1.559400 1.072148
e -0.487399 0.436143 -1.045622 -0.029507
f 0.552548 0.410745 0.570222 -0.628133
g 0.865293 -0.638388 0.388827 -0.469282
h -0.690596 1.765139 -0.492070 -0.176074
示例5
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(8, 4),index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D'])
print (df.loc['a']>0) # 逻辑判断
输出结果 -
A False
B True
C False
D True
Name: a, dtype: bool
.iloc()
Pandas提供了各种方法,以获得纯整数索引。像python和numpy一样,第一个位置是基于0的索引。
各种访问方式如下 -
- 整数
- 整数列表
- 系列值
示例1:默认按行取
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])
print (df.iloc[:4])
输出结果:
A B C D
0 0.277146 0.274234 0.860555 -1.312323
1 -1.064776 2.082030 0.695930 2.409340
2 0.033953 -1.155217 0.113045 -0.028330
3 0.241075 -2.156415 0.939586 -1.670171
示例2:带逗号,则是行列
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])
print (df.iloc[:4])
print (df.iloc[1:5, 2:4])
输出结果:
A B C D
0 1.346210 0.251839 0.975964 0.319049
1 0.459074 0.038155 0.893615 0.659946
2 -1.097043 0.017080 0.869331 -1.443731
3 1.008033 -0.189436 -0.483688 -1.167312
C D
1 0.893615 0.659946
2 0.869331 -1.443731
3 -0.483688 -1.167312
4 1.566395 -1.292206
示例3
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) print (df.iloc[[1, 3, 5], [1, 3]])
print (df.iloc[1:3, :])
print (df.iloc[:,1:3])
输出结果:
B D
1 0.081257 0.009109
3 1.037680 -1.467327
5 1.106721 0.320468
A B C D
1 -0.133711 0.081257 -0.031869 0.009109
2 0.895576 -0.513450 -0.048573 0.698965
B C
0 0.442735 -0.949859
1 0.081257 -0.031869
2 -0.513450 -0.048573
3 1.037680 -0.801157
4 -0.547456 -0.255016
5 1.106721 0.688142
6 -0.466452 0.219914
7 1.583112 0.982030
.ix()
除了基于纯标签和整数之外,Pandas还提供了一种使用.ix()运算符进行选择和子集化对象的混合方法。
示例1
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])
print (df.ix[:4])
输出结果:
A B C D
0 -1.449975 -0.002573 1.349962 0.539765
1 -1.249462 -0.800467 0.483950 0.187853
2 1.361273 -1.893519 0.307613 -0.119003
3 -0.103433 -1.058175 -0.587307 -0.114262
4 -0.612298 0.873136 -0.607457 1.047772
示例2
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])
print (df.ix[:,'A'])
输出结果:
0 1.539915
1 1.359477
2 0.239694
3 0.563254
4 2.123950
5 0.341554
6 -0.075717
7 -0.606742
Name: A, dtype: float64
其他方法
使用符号
使用多轴索引从Pandas对象获取值可使用以下符号 -
| 对象 | 索引 | 描述 |
|---|---|---|
| Series | s.loc[indexer] |
标量值 |
| DataFrame | df.loc[row_index,col_index] |
标量对象 |
| Panel | p.loc[item_index,major_index, minor_index] |
p.loc[item_index,major_index, minor_index] |
注意 -
.iloc()和.ix()应用相同的索引选项和返回值。
现在来看看如何在DataFrame对象上执行每个操作。这里使用基本索引运算符[] -
示例1
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])
print (df['A'])
输出结果:
0 0.028277
1 -1.037595
2 -0.563495
3 -1.196961
4 -0.805250
5 -0.911648
6 -0.355171
7 -0.232612
Name: A, dtype: float64
示例2
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])
print (df[['A','B']])
输出结果:
A B
0 -0.767339 -0.729411
1 -0.563540 -0.639142
2 0.873589 -2.166382
3 0.900330 0.253875
4 -0.520105 0.064438
5 -1.452176 -0.440864
6 -0.291556 -0.861924
7 -1.464235 0.313168
示例3
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])
print (df[2:2])
输出结果:
Empty DataFrame
Columns: [A, B, C, D]
Index: []
属性访问
可以使用属性运算符.来选择列。
示例
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])
print (df.A)
输出结果:
0 0.104820
1 -1.206600
2 0.469083
3 -0.821226
4 -1.238865
5 1.083185
6 -0.827833
7 -0.199558
Name: A, dtype: float64
Pandas | 13 索引和选择数据的更多相关文章
- pandas 学习 第14篇:索引和选择数据
数据框和序列结构中都有轴标签,轴标签的信息存储在Index对象中,轴标签的最重要的作用是: 唯一标识数据,用于定位数据 用于数据对齐 获取和设置数据集的子集. 本文重点关注如何对序列(Series)和 ...
- Python 数据分析 - 索引和选择数据
loc,iloc,ix三者间的区别和联系 loc .loc is primarily label based, but may also be used with a boolean array. 就 ...
- Pandas索引和选择数据
在本章中,我们将讨论如何切割和丢弃日期,并获取Pandas中大对象的子集. Python和NumPy索引运算符"[]"和属性运算符".". 可以在广泛的用例中快 ...
- pandas选择数据-【老鱼学pandas】
选择列 根据列名来选择某列的数据 import pandas as pd import numpy as np dates = pd.date_range("2017-01-08" ...
- 【转】Pandas学习笔记(二)选择数据
Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...
- pandas处理时间序列(2):DatetimeIndex、索引和选择、含有重复索引的时间序列、日期范围与频率和移位、时间区间和区间算术
一.时间序列基础 1. 时间戳索引DatetimeIndex 生成20个DatetimeIndex from datetime import datetime dates = pd.date_rang ...
- pandas实战——对星巴克数据的分析
一.实验对象 实验对象为星巴克在全球的门店数据,我们可以使用pandas对其进行简单的分析,如分析每个国家星巴克的数量,根据门店数量对国家进行排序等. 二.数据分析 1.读取数据并获取数据行列数 首先 ...
- 05-pandas索引切片读取数据缺失数据处理
引入 numpy已经能够帮助我们处理数据,能够结合matplotlib解决我们数据分析的问题,那么pandas学习的目的在什么地方呢? numpy能够帮我们处理处理数值型数据,但是这还不够 很多时候, ...
- Pandas里面常用的一些数据分析函数总结
import pandas as pdimport numpy as np pandas 有两个主要的数据结构:Series 和 DataFrame:Series 是一个一维数组对象 ,它包含一组索引 ...
随机推荐
- centos 7 安装python3 & pip3
1.安装python3 https://www.cnblogs.com/Trees/p/7497482.html 2.解决:python ModuleNotFoundError: No module ...
- JavaScript 内存回收机制
引用 垃圾回收算法主要依赖引用的概念,例如一个对象如果有另外一个对象的访问权限,这里就叫做一个对象引用另外一个对象,不论这里是显式还是隐式 回收机制 Js具有自动垃圾回收机制.垃圾收集器会按照固定的时 ...
- node 读取超大Excel 文件,提取数据
之前是用 node-xlsx 来处理excel文件,主要是读取数据或者根据数据生成excel文件.不过,node-xlsx 似乎无法处理超大的excel(100MB以上),例如: var xlsx = ...
- FutureTask源码
FutureTask可用于异步获取执行结果或取消执行任务的场景.通过传入Runnable或者Callable的任务给FutureTask,直接调用其run方法或者放入线程池执行,之后可以在外部通过Fu ...
- unix高级环境编程学习笔记第七章(未完)
博客地址:http://www.cnblogs.com/zengjianrong/p/3222081.html 7.1 引言 Main函数调用:命令行参数:存储器布局:如何分配存储器:进程使用env: ...
- css设置手型光标
因为现在主流浏览器是chrome,所以要尽量使用 cursor:pointer,不要使用 cursor:hand chrome下支持的鼠标样式 default 默认光标(通常是一个箭头) auto 默 ...
- 【题解】Diferenc-Diferencija [SP10622]
[题解]Diferenc-Diferencija [SP10622] 传送门:\(\text{Diferenc-Diferencija}\) \(\text{[SP10622]}\) [题目描述] 序 ...
- 【leetcode-148】排序链表
在 O(n log n) 时间复杂度和常数级空间复杂度下,对链表进行排序. 示例 1: 输入: 4->2->1->3输出: 1->2->3->4示例 2: 输入: ...
- Android Studio出现Wait for build to finish解决办法
公司用钉钉打卡,我作弊哈哈,买了个大牛助手. 刚续费包年,开发商竟然跑路了.服务器连不上,不能用了,心血来潮想说能否自己破解了.好家伙需要学的还真不少,首先还要从安卓开发学起... 刚装了Androi ...
- Delphi - TIdFTP 两个重要函数
TIdFTP 两个重要函数 项目开发过程中发现,直接对于服务器上的文件/路径进行处理,是很危险的事情,因为一旦文件/路径不存在,程序就会抛异常,影响客户体验.所以在对服务器上的文件/路径进行访问之前, ...