Pandas的三种数据结构:

  • 系列(Series)
  • 数据帧(DataFrame)
  • 面板(Panel)

这些数据结构,构建在Numpy数组之上,这意味着它们很快

维数和描述

考虑这些数据结构的最好方法是,较高维数据结构是其较低维数据结构的容器。 例如,DataFrameSeries的容器,PanelDataFrame的容器。

数据结构 维数 描述
系列 1 1D标记均匀数组,大小不变。
数据帧 2 一般2D标记,大小可变的表结构与潜在的异质类型的列。
面板 3 一般3D标记,大小可变数组。

构建和处理两个或更多个维数组是一项繁琐的任务,用户在编写函数时要考虑数据集的方向。 但是使用Pandas数据结构,减少了用户的思考。例如,使用表格数据(DataFrame),在语义上更有用于考虑索引(行)和列,而不是轴0和轴1

可变性

所有Pandas数据结构是值可变的(可以更改),除了系列都是大小可变的。系列是大小不变的。

注 - DataFrame被广泛使用,是最重要的数据结构之一。面板使用少得多。

一、系列

系列是具有均匀数据的一维数组结构。例如,以下系列是整数:10,23,56...的集合。

关键点

  • 均匀数据
  • 尺寸大小不变
  • 数据的值可变

二、数据帧

数据帧(DataFrame)是一个具有异构数据的二维数组。 例如,

姓名 年龄 性别 等级
Maxsu 25 4.45
Katie 34 2.78
Vina 46 3.9
Lia x女 4.6

上表数据以行和列表示。每列表示一个属性,每行代表一个人。

列的数据类型

上面数据帧中四列的数据类型如下:

类型
姓名 字符串
年龄 整数
性别 字符串
等级 浮点型

关键点

  • 异构数据
  • 大小可变
  • 数据可变

三、面板

面板是具有异构数据的三维数据结构。在图形表示中很难表示面板。但是一个面板可以说明为DataFrame的容器。

关键点

  • 异构数据
  • 大小可变
  • 数据可变

Pandas | 01 数据结构的更多相关文章

  1. Pandas 的数据结构

    Pandas的数据结构 导入pandas: 三剑客 from pandas import Series,DataFrame import pandas as pd import numpy as np ...

  2. pandas的数据结构之series

    Pandas的数据结构 1.Series Series是一种类似于一维数组的对象,由下面两个部分组成: index:相关的数据索引标签 values:一组数据(ndarray类型) series的创建 ...

  3. Pandas的使用(3)---Pandas的数据结构

    Pandas的使用(3) Pandas的数据结构 1.Series 2.DataFrame

  4. Pandas之数据结构

    pandas入门 由于最近公司要求做数据分析,pandas每天必用,只能先跳过numpy的学习,先学习大Pandas库 Pandas是基于Numpy构建的,让以Numpy为中心的应用变得更加简单 pa ...

  5. pandas中数据结构-Series

    pandas中数据结构-Series pandas简介 Pandas是一个开源的,BSD许可的Python库,为Python编程语言提供了高性能,易于使用的数据结构和数据分析工具.Python与Pan ...

  6. 02. Pandas 1|数据结构Series、Dataframe

    1."一维数组"Series Pandas数据结构Series:基本概念及创建 s.index  . s.values # Series 数据结构 # Series 是带有标签的一 ...

  7. Python数据分析Pandas库数据结构(一)

    pandas数据结构 1.生成一维矩阵模拟数据 import pandas as pdimport numpy as nps = pd.Series([1,2,3,4,np.nan,9,9])s2 = ...

  8. pandas 的数据结构(Series, DataFrame)

    Pandas 讲解 Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的. Pandas 纳入了大量库和一些标 ...

  9. pandas 的数据结构Series与DataFrame

    pandas中有两个主要的数据结构:Series和DataFrame. [Series] Series是一个一维的类似的数组对象,它包含一个数组数据(任何numpy数据类型)和一个与数组关联的索引. ...

随机推荐

  1. debian系统配置

    使用腾讯docker源 sudo sed -i 's/deb.debian.org/mirrors.cloud.tencent.com/g' /etc/apt/sources.list sudo se ...

  2. 【RS】Deep Learning based Recommender System: A Survey and New Perspectives - 基于深度学习的推荐系统:调查与新视角

    [论文标题]Deep Learning based Recommender System: A Survey and New Perspectives ( ACM Computing Surveys  ...

  3. Ansible17:Playbook之tags

    目录 简介 为task打tag 使用tag 执行指定tag的task 排除指定tag的task 查看playbook中的所有tag 打tag的几种方式 ansible内置tag 简介 在大型项目当中, ...

  4. NFS客户端挂载失败之authenticated unmount request from

    1.故障现象 客户端挂载时夯住,无反应,无报错,如下图: 2.故障前对挂载目录的操作 发现故障前挂载目录被误删除,后通过备份分为恢复 3.故障排查步骤 .检查客户端及服务端防火墙规则 .检查selin ...

  5. 猫狗识别——PyTorch

    猫狗识别 数据集下载: 网盘链接:https://pan.baidu.com/s/1SlNAPf3NbgPyf93XluM7Fg 提取密码:hpn4 1. 要导入的包 import os import ...

  6. AspNet Core使用Mysql一些问题及解决方案

    本文假设的你的AspNet Core 2.2的Web程序通过EntityFrameworkCore连接使用MSSQL数据库,能正常使用. 如何想转为使用Mysql,其实不难. 1.安装Mysql这个简 ...

  7. C#/.Net操作MongoDBHelper类

    先 NuGet两个程序集 1:MongoDB.Driver.   2:MongoDB.Bson namespace ConsoleApp1{ /// <summary> /// Mongo ...

  8. python2.7写的图形密码生成器

    #coding:utf8import random,wxdef password(event): a = [chr(i) for i in range(97,123)] b = [chr(i) for ...

  9. springmvc上传图片到Tomcat虚拟目录

    一.简介 通过把文件上传到tomcat的虚拟目录,实现代码和资源文件分开. 二.环境 spring+springmvc+mybatis 三.代码实现 1.导入文件上传的jar <dependen ...

  10. Delphi中窗体的事件

    Delphi中窗体的事件 Form窗体可以响应各种各样的时间,在Object Inspector的Events页面中罗列了一大堆,如下图: 下面将要列出一些常用的事件. 1.OnActivate 当窗 ...