题意:

$mhy$ 住在一棵有 $n$ 个点的树的 $1$ 号结点上,每个结点上都有一个妹子。

$mhy$ 从自己家出发,去给每一个妹子都送一台电脑,每个妹子拿到电脑后就会开始安装 $zhx$ 牌杀毒软件,第 $i$ 个妹子安装时间为 $Ci$。

树上的每条边 $mhy$ 能且仅能走两次,每次耗费 $1$ 单位时间。$mhy$ 送完所有电脑后会回自己家里然后开始装 $zhx$ 牌杀毒软件。

卸货和装电脑是不需要时间的。

求所有妹子和 $mhy$ 都装好 $zhx$ 牌杀毒软件的最短时间。

题解:由于每条边最多走两次,所以如果进入点 $x$,必须要遍历完 $x$ 的所有子节点才能出来,我们考虑树形dp.

令 $f[i]$ 表示进入点 $i$ ,安装完 $i$ 子树中所有电脑的最小时刻,$size[i]$ 表示 $i$ 点子树中节点数量.

那么,对于点 $i$ 来说,我们就是要安排一个遍历 $i$ 点所有儿子的顺序,使得:

$max(f[1]+1,2size[1]+f[2]+1,2size[1]+2size[2]+f[3]+1,.....\sum_{i=1}^{n-1}size[i]+f[n]+1)$ 的最大值最小.

但是,我们并不知道该如何安排遍历儿子的顺序,但是我们可以考虑只有两个儿子的情况,然后发现:

若有 $i,j$ 而 $f[i]-2size[i]<f[j]-2size[j]$,则 $j$ 在 $i$ 之前访问更优.

对儿子排完序后依次累加即可.

#include <bits/stdc++.h>
#define N 500004
#define LL long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
char *p1,*p2,buf[100000];
#define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
int rd() {int x=0; char c=nc(); while(c<48) c=nc(); while(c>47) x=(((x<<2)+x)<<1)+(c^48),c=nc(); return x;}
struct data
{
int f,size,id;
data(int f=0,int size=0,int id=0):f(f),size(size),id(id){}
};
bool cmp(data a,data b)
{
return a.f-2*a.size==b.f-2*b.size?a.f>b.f:a.f-2*a.size>b.f-2*b.size;
}
int n,edges;
vector<data>G[N];
int hd[N],to[N<<1],nex[N<<1],val[N],f[N],size[N];
void add(int u,int v)
{
nex[++edges]=hd[u],hd[u]=edges,to[edges]=v;
}
void dfs(int u,int ff)
{
size[u]=1;
for(int i=hd[u];i;i=nex[i])
{
int v=to[i];
if(v==ff) continue;
dfs(v,u);
G[u].push_back(data(f[v]+1,size[v],v));
size[u]+=size[v];
}
sort(G[u].begin(),G[u].end(),cmp);
int cur=0;
if(u!=1) f[u]=val[u];
for(int i=0;i<G[u].size();++i)
{
f[u]=max(f[u],cur+G[u][i].f);
cur+=2*G[u][i].size;
}
}
int main()
{
// setIO("input");
int i,j;
n=rd();
for(i=1;i<=n;++i) val[i]=rd();
for(i=1;i<n;++i)
{
int u,v;
u=rd(),v=rd();
add(u,v), add(v,u);
}
dfs(1,0);
f[1]=max(f[1], size[1]*2-2+val[1]);
printf("%d\n",f[1]);
return 0;
}

  

bzoj 3829: [Poi2014]FarmCraft 树形dp+贪心的更多相关文章

  1. BZOJ3829[Poi2014]FarmCraft——树形DP+贪心

    题目描述 In a village called Byteville, there are   houses connected with N-1 roads. For each pair of ho ...

  2. [BZOJ 3829][POI2014] FarmCraft

    先贴一波题面... 3829: [Poi2014]FarmCraft Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 421  Solved: 197[ ...

  3. 【BZOJ3829】[Poi2014]FarmCraft 树形DP(贪心)

    [BZOJ3829][Poi2014]FarmCraft Description In a village called Byteville, there are   houses connected ...

  4. [POI2014]FAR-FarmCraft 树形DP + 贪心思想

    (感觉洛谷上题面那一小段中文根本看不懂啊,好多条件都没讲,直接就是安装也要一个时间啊,,,明明不止啊!还好有百度翻译......) 题意:一棵树,一开始在1号节点(root),边权都为1,每个点有点权 ...

  5. POI2014 FAR-FarmCraft 树形DP+贪心

    题目链接 https://www.luogu.org/problem/P3574 题意 翻译其实已经很明确了 分析 这题一眼就是贪心啊,但贪心的方法要思索一下,首先是考虑先走时间多的子树,但不太现实, ...

  6. 【bzoj4027】[HEOI2015]兔子与樱花 树形dp+贪心

    题目描述 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它 ...

  7. Bzoj 1131[POI2008]STA-Station (树形DP)

    Bzoj 1131[POI2008]STA-Station (树形DP) 状态: 设\(f[i]\)为以\(i\)为根的深度之和,然后考虑从他父亲转移. 发现儿子的深度及其自己的深度\(-1\) 其余 ...

  8. 【BZOJ3522】[Poi2014]Hotel 树形DP

    [BZOJ3522][Poi2014]Hotel Description 有一个树形结构的宾馆,n个房间,n-1条无向边,每条边的长度相同,任意两个房间可以相互到达.吉丽要给他的三个妹子各开(一个)房 ...

  9. [BZOJ1596] [Usaco2008 Jan]电话网络(树形DP || 贪心)

    传送门 1.树形DP #include <cstdio> #include <cstring> #include <iostream> #define N 1000 ...

随机推荐

  1. nRF24L01/nRF24L01+应用总结

    nRF24L01+是nRF24L01的升级款,比较显眼的区别是nRF24L01+比nRF24L01多了一个250Kbps传输速率.其它的还有接收模式官方给的耗电量是不一样的.个别寄存器名字不一样. 接 ...

  2. PHP生成随机单词

    class GenRandWords { private static $_alphas = [ 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', ' ...

  3. Dubbo快速入门 一

    1.分布式基础理论 1.1).什么是分布式系统? “分布式系统是若干独立计算机的集合,这些计算机对于用户来说就像单个相关系统” 分布式系统(distributed system)是建立在网络之上的软件 ...

  4. Spring系列(三):Spring IoC源码解析

    一.Spring容器类继承图 二.容器前期准备 IoC源码解析入口: /** * @desc: ioc原理解析 启动 * @author: toby * @date: 2019/7/22 22:20 ...

  5. Delphi调用爷爷类的方法(自己构建一个procedure of Object)

    Delphi通过inherited 可以调用父类的方法,但是没有提供直接调用父类的父类的方法(爷爷类),通过变通的方式实现如下: 假设父类是TFather,爷爷类TGrand,调用爷爷类的Write方 ...

  6. C#破解dll

    使用反编译工具对dll文件进行反编译,找到校验过期的相关代码,反编译工具可以使用ILSpy或Reflector; 使用ildasm.exe工具将dll导出成il文本文件,在该文件中找到相关的代码进行修 ...

  7. python3.7 64位中安装pygame1.9.3

    1.我是用pip命令来安装的,首先,打开cmd,输入pip,检查电脑中有没有安装这个插件(一般python2.7以上自带pip工具) 2.更新pip工具的命令:python -m pip instal ...

  8. EasyARM-iMX283 安装NFS

    1. 安装NFS软件包在 ubuntu 上请输入下面命令:[chenxibing@localhost ~]$ sudo apt-get install nfs-kernel-server[chenxi ...

  9. webapp之登录页面当input获得焦点时,顶部版权文本被顶上去 的解决方法

    如上图,顶部版权是用绝对定位写的,被顶上去了,解决方法是判断屏幕大小,改变footer的定位方式: <script> var oHeight = $(document).height(); ...

  10. VIM的配置以及插件管理

    VIM的配置详细说明参考:http://www.ruanyifeng.com/blog/2018/09/vimrc.html 此外VIM的插件管理比如 Vundle可以参考这个博客: https:// ...