这里以二元分类为例子,给出最基本原理的解释

GBDT 是多棵树的输出预测值的累加

GBDT的树都是 回归树 而不是分类树

  1. 分类树

分裂的时候选取使得误差下降最多的分裂

计算的技巧

最终分裂收益按照下面的方式计算,注意圆圈内的部分是固定值

  1. GBDT 二分类

GBDT在实现中可以完全复用上面的计算方法框架,只是我们的优化的目标函数不同。

这里使用的是 指数误差函数,不管是预测正确还是错误 误差值都存在,但是正确的预测 会使得误差值小于错误的预测 参考

AdaBoost and the Super Bowl of Classifiers

A Tutorial Introduction to Adaptive Boosting

关于常用误差函数 参考 http://www.cnblogs.com/rocketfan/p/4083821.html

参考 Greedy Functon Approximation:A Gradient Boosting Machine

4.4节关于二分类情况误差函数的设计

这里其实和上面给出的一样,只是增加了 log(1 +, 另外多了一个2,2yF), 参考前面的LossFunction http://www.cnblogs.com/rocketfan/p/4083821.html

的推导,其实这个应该算作LogLoss或者说是logistic regression, cross entropy error,也就是从probablity出发的logloss推导到output F(x)的表示就是上面的

式子,而它看上去刚好就是一个指数误差函数。

严格意义上说是LogLoss不是指数误差 不过LogLoss和指数误差看上去比较相似。

页解释,线性加权的值(output)用来预测 p(true)和p(false)的比例的log值(回归值是实数范围取值不适合预测0-1,做了一个转换),越是接近true,那么F(x)越接近+无穷(对应最大可能性判断true), p(false)越大 那么越接近-无穷(对应最大可能性判断false)

F(X) 对应 feature X 当前的回归预测值也就是多棵树经过决策到达叶子节点的输出值output(x)的累加值。N个样本则F(x)N个维度,当开始没有分裂的时候所有样本在一个节点则所有F(x)对应一个相同的值,分裂一次后两个叶子节点则F(X)对应可能到不同的叶子节点从而可能有两个不同的值。

对误差函数计算关于F的梯度,误差函数是

变量是F(x)

考虑learning_rate之后是 (@TODO)

F(X) 对应 叶子节点中一个样本对应它的feature X 当前的预测值

参考 机器学习概率角度 一书的16章

我们的分裂目标从上面回归树基本算法中的希望逼近y 变成了 逼近梯度值 r_im,

也就是说当前树是预测负梯度值的。

F_m(x) = F_m-1(x) + learning_rate*(当前树的预测值(也就是预测负梯度..)) //@TODO check

再对比下ng课件最简单的梯度下降 针对regression的例子

我们采用的每颗树更新策略是针对F(x)的,而F(x)沿着梯度的方向的累加,目标是使得我们的

误差函数达到最小。

GBDT的基本原理的更多相关文章

  1. 随机森林RF、XGBoost、GBDT和LightGBM的原理和区别

    目录 1.基本知识点介绍 2.各个算法原理 2.1 随机森林 -- RandomForest 2.2 XGBoost算法 2.3 GBDT算法(Gradient Boosting Decision T ...

  2. 后端程序员之路 10、gbdt(Gradient Boosting Decision Tree)

    1.GbdtModelGNode,含fea_idx.val.left.right.missing(指向left或right之一,本身不分配空间)load,从model文件加载模型,xgboost输出的 ...

  3. gbdt在回归方面的基本原理以及实例并且可以做分类

    对书法的热爱,和编译器打数学公式很艰难,就这样的正例自己学过的东西,明天更新gbdt在分类方面的应用. 结论,如果要用一个常量来预测y,用log(sum(y)/sum(1-y))是一个最佳的选择. 本 ...

  4. RF,GBDT,XGBoost,lightGBM的对比

    转载地址:https://blog.csdn.net/u014248127/article/details/79015803 RF,GBDT,XGBoost,lightGBM都属于集成学习(Ensem ...

  5. GBDT学习笔记

    GBDT(Gradient Boosting Decision Tree,Friedman,1999)算法自提出以来,在各个领域广泛使用.从名字里可以看到,该算法主要涉及了三类知识,Gradient梯 ...

  6. 机器学习 | 详解GBDT梯度提升树原理,看完再也不怕面试了

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第30篇文章,我们今天来聊一个机器学习时代可以说是最厉害的模型--GBDT. 虽然文无第一武无第二,在机器学习领域并没有 ...

  7. Ognl表达式基本原理和使用方法

    Ognl表达式基本原理和使用方法 1.Ognl表达式语言 1.1.概述 OGNL表达式 OGNL是Object Graphic Navigation Language(对象图导航语言)的缩写,他是一个 ...

  8. Android自定义控件之基本原理

    前言: 在日常的Android开发中会经常和控件打交道,有时Android提供的控件未必能满足业务的需求,这个时候就需要我们实现自定义一些控件,今天先大致了解一下自定义控件的要求和实现的基本原理. 自 ...

  9. scikit-learn 梯度提升树(GBDT)调参小结

    在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn ...

随机推荐

  1. Hadoop学习笔记—15.HBase框架学习(基础实践篇)

    一.HBase的安装配置 1.1 伪分布模式安装 伪分布模式安装即在一台计算机上部署HBase的各个角色,HMaster.HRegionServer以及ZooKeeper都在一台计算机上来模拟. 首先 ...

  2. 配置apache和nginx的tomcat负载均衡

    概述 本篇文章主要介绍apache和nginx的相关配置,tomcat的相关安装配置我在前面有写过一篇,详细介绍通过两种配置方法配置nginx. tomcat配置参考:http://www.cnblo ...

  3. IOS SWIFT 启动流程学习

    其实和我们java.c一样通过一个main函数作为入口. main封装在了UIApplicationMain里面.所以后者变成启动入口. 他会扫描Info.plist,找到需要加载的入口storybo ...

  4. jieba.NET与Lucene.Net的集成

    首先声明:我对Lucene.Net并不熟悉,但搜索确实是分词的一个重要应用,所以这里还是尝试将两者集成起来,也许对你有一参考. 看到了两个中文分词与Lucene.Net的集成项目:Lucene.Net ...

  5. Lua table之弱引用

    Lua采用了基于垃圾收集的内存管理机制,因此对于程序员来说,在很多时候内存问题都将不再困扰他们.然而任何垃圾收集器都不是万能的,在有些特殊情况下,垃圾收集器是无法准确的判断是否应该将当前对象清理.这样 ...

  6. Qt on Android 核心编程

    Qt on Android 核心编程(最好看的Qt编程书!CSDN博主foruok倾力奉献!) 安晓辉 著   ISBN 978-7-121-24457-5 2015年1月出版 定价:65.00元 4 ...

  7. WaitType:SOS_SCHEDULER_YIELD

    今天遇到一个query,处于SOS_SCHEDULER_YIELD 状态,physical IO 不增加,CPU的使用一直在增长.当一个sql query长时间处于SOS_SCHEDULER_YIEL ...

  8. TOMCAT开放远程调试端口

    方法1. WIN系统,在catalina.bat里: SET CATALINA_OPTS=-server -Xdebug -Xnoagent -Djava.compiler=NONE -Xrunjdw ...

  9. 配置 L2 Population - 每天5分钟玩转 OpenStack(114)

    前面我们学习了L2 Population 的原理,今天讨论如何在 Neutron 中配置和启用此特性. 目前 L2 Population 支持 VXLAN with Linux bridge 和 VX ...

  10. 部署 instance 到 VXLAN - 每天5分钟玩转 OpenStack(112)

    上一节我们创建了 vxlan 100_net,今天将部署 instance 并分析网络的连通性. launch 新的 instance "cirros-vm1",网络选择 vxla ...