Educational Codeforces Round 69 (Rated for Div. 2) E. Culture Code
Educational Codeforces Round 69 (Rated for Div. 2) E. Culture Code
题意:
给出\(n\)个俄罗斯套娃,每个套娃都有一个\(in_i,out_i\),并满足\(out_i>in_i\)。定义套娃\(i\)能套在套娃\(j\)里面,当且仅当\(out_i\leq in_j\)。
定义极大套娃组:当且仅当不能有另外一个套娃套在它们身上。
定义套娃组额外空间为\(in_1+(in_2-out_1)+\cdots +(in_k-out_{k-1})\),其中\(k\)为最大的那个套娃。
现在求额外空间最小的极大套娃组都多少个。
思路:
将上面求和式子变换一下有:
\]
分析这个式子,也就是对于一个在最外面的套娃\(k\)来说,其余里面套娃的贡献就为\(in_i-out_i\),是独立的。
首先将所有套娃按\(in\)升序排序,之后依次枚举每一个套娃并将其视作最后一个套娃。假设当前枚举的\(i\),那么\(dp(i)=min_{out_j\leq in_i}\{dp(j)\}+in_i\),\(dp\)中存储的是套娃的贡献值,\(dp(i)\)表示以\(i\)作结尾的套娃最小的额外空间是多少。
因为题目还要求数目,考虑转移的时候在线段树上面查询,同时维护一个\(sum\)记录个数,查询、更新的时候进行结点的合并,合并实现两个功能:一是找最小值,而是更新个数,详见代码即可。
最后统计答案的时候,找到所有的极大套娃组进行统计。
代码如下:
#include <bits/stdc++.h>
#define mp make_pair
#define fi first
#define se second
#define INF 0x3f3f3f3f3f3f3f3f
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
const int N = 2e5 + 5, MOD = 1e9 + 7;
int n;
pii a[N];
struct SEG{
struct node{
ll Min, sum;
node() {
sum = 0; Min = INF;
}
node(ll Min, ll sum) : Min(Min), sum(sum) {}
node operator + (const node &other) const {
node res = node();
if(Min < other.Min) {
res.Min = Min;
res.sum = sum;
} else if(Min == other.Min) {
res.Min = Min;
res.sum = (other.sum + sum) % MOD;
} else {
res.Min = other.Min;
res.sum = other.sum;
}
return res;
}
}t[N << 3], res;
void build(int o, int l, int r) {
if(l == r) {
t[o] = node();
return;
}
int mid = (l + r) >> 1;
build(o << 1, l, mid); build(o << 1|1, mid + 1, r);
}
void update(int o, int l, int r, int p, node v) {
if(l == r) {
t[o] = t[o] + v;
return ;
}
int mid = (l + r) >> 1;
if(p <= mid) update(o << 1, l, mid, p, v);
else update(o << 1|1, mid + 1, r, p, v);
t[o] = t[o << 1] + t[o << 1|1];
}
void query(int o, int l, int r, int L, int R) {
if(L <= l && r <= R) {
res = res + t[o];
return ;
}
int mid = (l + r) >> 1;
if(L <= mid) query(o << 1, l, mid, L, R);
if(R > mid) query(o << 1|1, mid + 1, r, L, R);
}
}seg;
int D, b[N << 1];
ll c[N], d[N];
int id(int x) {
return lower_bound(b + 1, b + D + 1, x) - b;
}
int main() {
ios::sync_with_stdio(false); cin.tie(0);
cin >> n;
for(int i = 1; i <= n; i++) {
cin >> a[i].se >> a[i].fi;
b[++D] = a[i].fi; b[++D] = a[i].se;
}
sort(a + 1, a + n + 1);
sort(b + 1, b + D + 1);
D = unique(b + 1, b + D + 1) - b - 1;
ll Min = INF;
seg.build(1, 1, D);
for(int i = 1; i <= n; i++) {
seg.res = SEG::node();
seg.query(1, 1, D, 1, id(a[i].fi));
if(seg.res.Min == INF) {
seg.res = SEG::node(a[i].fi - a[i].se, 1);
c[i] = 1; d[i] = a[i].fi;
seg.update(1, 1, D, id(a[i].se), seg.res);
} else {
c[i] = seg.res.sum;
d[i] = seg.res.Min + a[i].fi;
seg.res.Min += a[i].fi - a[i].se;
seg.update(1, 1, D, id(a[i].se), seg.res);
}
if(a[i].se > a[n].fi) Min = min(Min, d[i]);
}
ll ans = 0;
for(int i = 1; i <= n; i++)
if(a[i].se > a[n].fi && d[i] == Min)
ans = (ans + c[i]) % MOD;
cout << ans;
return 0;
}
Educational Codeforces Round 69 (Rated for Div. 2) E. Culture Code的更多相关文章
- Educational Codeforces Round 69 (Rated for Div. 2)
A. DIY ...
- Educational Codeforces Round 69 (Rated for Div. 2) D. Yet Another Subarray Problem 背包dp
D. Yet Another Subarray Problem You are given an array \(a_1, a_2, \dots , a_n\) and two integers \( ...
- Educational Codeforces Round 69 (Rated for Div. 2) C. Array Splitting 水题
C. Array Splitting You are given a sorted array
- Educational Codeforces Round 69 (Rated for Div. 2) A~D Sloution
A. DIY Wooden Ladder 题意:有一些不能切的木板,每个都有一个长度,要做一个梯子,求梯子的最大台阶数 做梯子的木板分为两种,两边的两条木板和中间的若干条台阶木板 台阶数为 $k$ 的 ...
- Educational Codeforces Round 69 (Rated for Div. 2)D(DP,思维)
#include<bits/stdc++.h>using namespace std;int a[300007];long long sum[300007],tmp[300007],mx[ ...
- Educational Codeforces Round 69 (Rated for Div. 2) C. Array Splitting (思维)
题意:给你一个长度为\(n\)的升序序列,将这个序列分成\(k\)段,每一段的值为最大值和最小值的差,求\(k\)段值的最小和. 题解:其实每一段的最大值和最小值的差,其实就是这段元素的差分和,因为是 ...
- Educational Codeforces Round 69 (Rated for Div. 2) D. Yet Another Subarray Problem 【数学+分块】
一.题目 D. Yet Another Subarray Problem 二.分析 公式的推导时参考的洛谷聚聚们的推导 重点是公式的推导,推导出公式后,分块是很容易想的.但是很容易写炸. 1 有些地方 ...
- Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship
Problem Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship Time Limit: 2000 mSec P ...
- Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)
Problem Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...
随机推荐
- 学Redis这篇就够了!
学Redis这篇就够了! 作者:王爷科技 https://www.toutiao.com/i6713520017595433485 Redis 简介 & 优势 Redis 数据类型 发布订 ...
- Java注解及其原理以及分析spring注解解析源码
注解的定义 注解是那些插入到源代码中,使用其他工具可以对其进行处理的标签. 注解不会改变程序的编译方式:Java编译器对于包含注解和不包含注解的代码会生成相同的虚拟机指令. 在Java中,注解是被当做 ...
- Nginx配置REWRITE隐藏index.php
server { listen 80; server_name localhost; root D:\workspace\PHP\Atromic; location / { index index.p ...
- xshell怎么配置鼠标颜色
在控制面板--> 鼠标属性 --> 指针 --> 文本选择 --> 浏览 --> beam_r.cur --> 打开 --> 应用 --> 确定
- 生成Makefile文件全过程
[1]生成Makefile文件全过程 整体流程如下图: 注意:以下文件根目录为testmake(任意位置新建即可) (1)测试程序 1.1 建立两个目录:mkdir include source 1. ...
- my first blog by cnblogs
#include <stdio.h> int main() { printf("hello everyone."); ; } 上面为我的第一个C语言测试代码,仅供初学者 ...
- 「NOI2018」冒泡排序
「NOI2018」冒泡排序 考虑冒泡排序中一个位置上的数向左移动的步数 \(Lstep\) 为左边比它大的数的个数,向右移动的步数 \(Rstep\) 为右边比它大的数的个数,如果 \(Lstep,R ...
- 『线段树及扫描线算法 Atlantis』
入门看这边『线段树 Segment Tree』. 扫描线 扫描线是一种解决一类平面内统计问题的算法,通常会借助线段树来实现,我们通过一道例题来引入这个算法. Atlantis Description ...
- 【C#】58. .Net中的并发集合——BlockingCollection
https://blog.csdn.net/huiwuhuiwu/article/details/53608269 这篇是并发集合中的最后一篇,介绍一下BlockingCollection.在工作中我 ...
- SAP T CODE : Description (Program)
SAP T CODE : Description (Program) V : Quickstart RKCOWUSL (RKCOWUSL)V+01 : Create Sales Call (SAPMV ...