【转】Pandas学习笔记(三)修改&添加值
Pandas学习笔记系列:
- Pandas学习笔记(一)基本介绍
- Pandas学习笔记(二)选择数据
- Pandas学习笔记(三)修改&添加值
- Pandas学习笔记(四)处理丢失值
- Pandas学习笔记(五)合并 concat
- Pandas学习笔记(六)合并 merge
- Pandas学习笔记(七)plot画图
原文:https://morvanzhou.github.io/tutorials/data-manipulation/np-pd/3-3-pd-assign/ 本文有删改
创建数据
我们可以根据自己的需求, 用 pandas 进行更改数据里面的值, 或者加上一些空的,或者有数值的列.
首先建立了一个 6X4 的矩阵数据。
dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D'])
"""
A B C D
2013-01-01 0 1 2 3
2013-01-02 4 5 6 7
2013-01-03 8 9 10 11
2013-01-04 12 13 14 15
2013-01-05 16 17 18 19
2013-01-06 20 21 22 23
"""
根据位置设置 loc 和 iloc
我们可以利用索引或者标签确定需要修改值的位置。
df.iloc[2,2] = 1111
df.loc['20130101','B'] = 2222
"""
A B C D
2013-01-01 0 2222 2 3
2013-01-02 4 5 6 7
2013-01-03 8 9 1111 11
2013-01-04 12 13 14 15
2013-01-05 16 17 18 19
2013-01-06 20 21 22 23
"""
根据条件设置
如果现在的判断条件是这样, 我们想要更改B中的数, 而更改的位置是取决于 A 的. 对于A大于4的位置. 更改B在相应位置上的数为0.
df.B[df.A>4] = 0
"""
A B C D
2013-01-01 0 2222 2 3
2013-01-02 4 5 6 7
2013-01-03 8 0 1111 11
2013-01-04 12 0 14 15
2013-01-05 16 0 18 19
2013-01-06 20 0 22 23
"""
按行或列设置
如果对整列做批处理, 加上一列 ‘F’, 并将 F 列全改为 NaN, 如下:
df['F'] = np.nan
"""
A B C D F
2013-01-01 0 2222 2 3 NaN
2013-01-02 4 5 6 7 NaN
2013-01-03 8 0 1111 11 NaN
2013-01-04 12 0 14 15 NaN
2013-01-05 16 0 18 19 NaN
2013-01-06 20 0 22 23 NaN
"""
添加数据
用上面的方法也可以加上 Series 序列(但是长度必须对齐)。
df['E'] = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130101',periods=6))
"""
A B C D F E
2013-01-01 0 2222 2 3 NaN 1
2013-01-02 4 5 6 7 NaN 2
2013-01-03 8 0 1111 11 NaN 3
2013-01-04 12 0 14 15 NaN 4
2013-01-05 16 0 18 19 NaN 5
2013-01-06 20 0 22 23 NaN 6
"""
注意添加新的一列数据时一定要记得指明index,因为你不指明index的话,即使新的列元素数量和原来DataFrame一样,那么最终还是会以NaN的格式初始化,看下面例子:
df['E'] = pd.Series([1,2,3,4,5,6],)
print(df)
"""
A B C D E
2013-01-01 0 1 2 3 NaN
2013-01-02 4 5 6 7 NaN
2013-01-03 8 9 10 11 NaN
2013-01-04 12 13 14 15 NaN
2013-01-05 16 17 18 19 NaN
2013-01-06 20 21 22 23 NaN
"""
当然如果我们指定的index和原来的不一样也没关系,因为pandas会自动把没有对应的部分填充为NaN,例子如下:
df['E'] = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130103',periods=6))
print(df)
"""
A B C D E
2013-01-01 0 1 2 3 NaN
2013-01-02 4 5 6 7 NaN
2013-01-03 8 9 10 11 1.0
2013-01-04 12 13 14 15 2.0
2013-01-05 16 17 18 19 3.0
2013-01-06 20 21 22 23 4.0
"""
【转】Pandas学习笔记(三)修改&添加值的更多相关文章
- [C#] 类型学习笔记三:自定义值类型
既前两篇之后,这一篇我们讨论通过struct 关键字自定义值类型. 在第一篇已经讨论过值类型的优势,节省空间,不会触发Gargage Collection等等. 在对性能要求比较高的场景下,通过str ...
- 【转】Pandas学习笔记(四)处理丢失值
Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...
- WPF-学习笔记 动态修改控件Margin的值
原文:WPF-学习笔记 动态修改控件Margin的值 举例说明:动态添加一个TextBox到Grid中,并设置它的Margin: TextBox text = new TextBox(); t_gri ...
- 【转】Pandas学习笔记(七)plot画图
Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...
- 【转】Pandas学习笔记(六)合并 merge
Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...
- 【转】Pandas学习笔记(五)合并 concat
Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...
- 【转】Pandas学习笔记(二)选择数据
Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...
- 【转】Pandas学习笔记(一)基本介绍
Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...
- JSP学习笔记(三):简单的Tomcat Web服务器
注意:每次对Tomcat配置文件进行修改后,必须重启Tomcat 在E盘的DATA文件夹中创建TomcatDemo文件夹,并将Tomcat安装路径下的webapps/ROOT中的WEB-INF文件夹复 ...
随机推荐
- 【LGR-060】洛谷10月月赛 I
A - 打字练习 出题:memset0 送分模拟题,按题意模拟即可. 需要注意的是对退格键的判断,如果光标已经在行首,则直接忽略被读入的退格键. B - 小猪佩奇爬树 出题:_QAQ 维护所有相同节点 ...
- Linux性能优化实战学习笔记:第四十讲
一.上节回顾 上一节,我们学习了碰到分布式拒绝服务(DDoS)的缓解方法.简单回顾一下,DDoS利用大量的伪造请求,导致目标服务要耗费大量资源,来处理这些无效请求,进而无法正常响应正常用户的请求. 由 ...
- Django+nginx+gunicore+supervisor+阿里云主机 部署博客项目
1 准备阶段 1 新鲜的阿里云主机 2 购买一个喜欢的域名 3 创建python的虚拟环境 2 阿里云主机的选取 咱们就是为了实验,我买了最便宜的阿里云主机 3 阿里云主机创建一个超级用户 3.1 默 ...
- vertica内存不足的解决方案
执行以下语句: alter resource pool general MAXMEMORYSIZE '80%'; 当内存达到80%时,新的任务进去等待状态,直到前面任务执行完毕.
- go-gin-api 路由中间件 - Jaeger 链路追踪
概述 首先同步下项目概况: 上篇文章分享了,路由中间件 - Jaeger 链路追踪(理论篇). 这篇文章咱们分享:路由中间件 - Jaeger 链路追踪(实战篇). 说实话,这篇文章确实让大家久等了, ...
- 关于wepy小程序图片显示问题
如果图片资源在本地,用background-image 是无法找到本地资源的,只能通过image标签用src进行引入: 图片资源在服务器上,用背景图片和image进行引入,在安卓真机上测试是没有问题的 ...
- pandas的使用(6)离散化和合并
pandas的使用(6)离散化和合并
- Java & Android未捕获异常处理机制
一.背景 无论是Java还是Android项目,往往都会用到多线程.不管是主线程还是子线程,在运行过程中,都有可能出现未捕获异常.未捕获异常中含有详细的异常信息堆栈,可以很方便的去帮助我们排查问题. ...
- 修改Linux桌面高分屏下QT程序界面的缩放
问题 Linux下的高分屏在Gnome.KDE中有缩放因子一说,但是对QT程序(常用如 WPS.网易云音乐等)无效,这里只是简记修改QT程序的缩放方法 解决 su #切换root用户 cp /etc/ ...
- Python 学习:常用函数整理
整理Python中常用的函数 一,把字符串形式的list转换为list 使用ast模块中的literal_eval函数来实现,把字符串形式的list转换为Python的基础类型list from as ...