【51nod1355】斐波那契的最小公倍数(min-max容斥)

题面

51nod

题解

显然直接算还是没法算的,所以继续考虑\(min-max\)容斥计算。

\[lcm(S)=\prod_{T\subset S}gcd(T)^{(-1)^{|T|+1}}
\]

而斐波那契数列满足\(gcd(f(a),f(b))=f(gcd(a,b))\),

于是和最小公倍佩尔数一样的类似处理

\[lcm(S)=\prod_{i=1}^{\infty}f(i)^{\sum_{T\subset S}[gcd(T)=i](-1)^{|T|+1}}
\]

令\(a[i]\)是上面那一堆东西,\(b[i]=\sum_{i|d}a[i]\),

然后发现

\[b[i]=\prod_{T\subset S}[i|gcd(T)](-1)^{|T|+1}
\]

只和是否存在\(i\)的倍数相关,存在就是\(1\),不存在就是\(0\)。

那么预处理一下就可以算出\(b\)。

而根据莫比乌斯反演,有

\[a[i]=\sum_{i|d}\mu(\frac{d}{i})b[d]
\]

所以答案式就是:

\[\begin{aligned}
lcm(S)&=\prod_{i=1}^{\infty}f(i)^{\sum_{T\subset S}[gcd(T)=i](-1)^{|T|+1}}\\
&=\prod_{i=1}^{\infty}f(i)^{\sum_{i|d}\mu(\frac{d}{i})b[d]}
\end{aligned}\]

也可以预处理之后爆算了。

#include<iostream>
#include<cstdio>
using namespace std;
#define MOD 1000000007
#define MAX 1001000
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int cnt[MAX];
bool zs[MAX];
int pri[MAX],tot,mu[MAX];
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
int n,ans=1,a[MAX],b[MAX],f[MAX];
void Sieve(int n)
{
mu[1]=1;
for(int i=2;i<=n;++i)
{
if(!zs[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<=n;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j])mu[i*pri[j]]=-mu[i];
else break;
}
}
}
int main()
{
n=read();
for(int i=1;i<=n;++i)b[read()]=1;
for(int i=1;i<MAX;++i)
for(int j=i+i;j<MAX;j+=i)
b[i]|=b[j];
f[1]=f[2]=1;for(int i=2;i<MAX;++i)f[i]=(f[i-1]+f[i-2])%MOD;
Sieve(MAX-1);
for(int i=1;i<MAX;++i)
for(int j=i;j<MAX;j+=i)
a[i]+=mu[j/i]*b[j];
for(int i=1;i<MAX;++i)
if(a[i]>0)ans=1ll*ans*fpow(f[i],a[i])%MOD;
else if(a[i]<0)ans=1ll*ans*fpow(f[i],MOD-1+a[i])%MOD;
printf("%d\n",ans);
return 0;
}

【51nod1355】斐波那契的最小公倍数(min-max容斥)的更多相关文章

  1. 51nod 1355 - 斐波那契的最小公倍数(Min-Max 容斥+莫比乌斯反演)

    vjudge 题面传送门 首先我们知道斐波那契数列的 lcm 是不太容易计算的,但是它们的 gcd 非常容易计算--\(\gcd(f_x,f_y)=f_{\gcd(x,y)}\),该性质已在我的这篇博 ...

  2. [51nod1355] 斐波那契的最小公倍数

    Description 给定 \(n\) 个正整数 \(a_1,a_2,...,a_n\),求 \(\text{lcm}(f_{a_1},f_{a_2},...,f_{a_n})\).其中 \(f_i ...

  3. 51nod1355-斐波那契的最小公倍数【min-max容斥】

    正题 题目链接:http://www.51nod.com/Challenge/Problem.html#problemId=1355 题目大意 定义\(f_i\)表示斐波那契的第\(i\)项,给出一个 ...

  4. Solution -「51nod 1355」斐波那契的最小公倍数

    \(\mathcal{Description}\)   Link.   令 \(f\) 为 \(\text{Fibonacci}\) 数列,给定 \(\{a_n\}\),求: \[\operatorn ...

  5. 斐波那契堆(一)之 图文解析 和 C语言的实现

    概要 本章介绍斐波那契堆.和以往一样,本文会先对斐波那契堆的理论知识进行简单介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现:实现的语言虽不同,但是原理如出一辙,选择其中之一进行了 ...

  6. 斐波那契堆(二)之 C++的实现

    概要 上一章介绍了斐波那契堆的基本概念,并通过C语言实现了斐波那契堆.本章是斐波那契堆的C++实现. 目录1. 斐波那契堆的介绍2. 斐波那契堆的基本操作3. 斐波那契堆的C++实现(完整源码)4.  ...

  7. 斐波那契堆(三)之 Java的实现

    概要 前面分别通过C和C++实现了斐波那契堆,本章给出斐波那契堆的Java版本.还是那句老话,三种实现的原理一样,择其一了解即可. 目录1. 斐波那契堆的介绍2. 斐波那契堆的基本操作3. 斐波那契堆 ...

  8. Java算法求最大最小值,冒泡排序,斐波纳契数列一些经典算法<不断更新中>

    清明在家,无聊,把一些经典的算法总结了一下. 一.求最大,最小值 Scanner input=new Scanner(System.in); int[] a={21,31,4,2,766,345,2, ...

  9. 斐波那契fib

    输入N和N个数(N<=10,每个数<=10^17),对于每个数,要输出能用几个斐波那契数加加减减得到 样例输入: 35101070 样例输出: 124 直接拷题解: fib[i]表示斐波那 ...

随机推荐

  1. SpringBoot+Swagger整合

    0.引言及注意事项 Swagger是一个接口文档工具,依照Swagger可以0配置开发接口.不过要注意,Swagger是基于SpringBoot1.47版本开发的,而SpringBoot现在基本都是是 ...

  2. FCC-学习笔记 Spinal Tap Case

    FCC-学习笔记   Spinal Tap Case 1>最近在学习和练习FCC的题目.这个真的比较的好,推荐给大家. 2>中文版的地址:https://www.freecodecamp. ...

  3. AOD.NET实现数据库事物Transaction

    在开始介绍文章主要内容前先简单说一下事务 1.事务介绍 事务是一种机制.是一种操作序列,它包含了一组数据库操作命令,这组命令要么全部执行,要么全部不执行.因此事务是一个不可分割的工作逻辑单元.在数据库 ...

  4. long类型在内存中占8个字节,float类型在内存中占4个字节,为什么long还要比float小呢?

    结论:数值范围大小和占用的字节没有关系. float类型的范围: 负数:-3.402823E38~-1.401298E-45 整数:0 正数:1.401298E-45~3.402823E38 long ...

  5. 12、shell_awk

    AWK awk 是一个优良的文本处理工具,其名字来源于三个开发人员的名字首字母缩写. awk 不但是一个优良的文件处理工作,它还可以自己编程,编写awk 程序   AWK基本格式:      awk ...

  6. Rust中的泛型

    go没有的,rust有呢~~ fn largest<T: PartialOrd + Copy>(list: &[T]) -> T { let mut largest = li ...

  7. EditPlus常用正则表达式

    正则表达式(Regular Expression,在代码中常简写为regex.regexp或RE)是计算机科学的一个概念.正则表达式使用单个字符串来描述.匹配一系列符合某个句法规则的字符串.在很多文本 ...

  8. 使用设备树来编写led驱动程序

    在总线设备驱动模型中,平台设备是写在c文件中.使用设备树时,平台设备事先并不存在,在dts文件中构造节点,节点里面含有资源.dts文件被编译成dtb文件,然后传递给内核.内核会解析dtb文件,得到一个 ...

  9. python selenium2 动态调试

    #coding=utf-8'''Created on 2017-9-9 @author: ceshi 转自https://testerhome.com/topics/9897''' # rpcserv ...

  10. windows下载的java项目部署到linux的各种解决方案

    1.Java是跨平台的,在linux下有问题,主要一是文件读取权限:二检查下系统环境变量设置可正确!.profile JavaWeb_将Windows平台上开发的JavaWeb项目部署到Linux平台 ...