import graphviz
import mglearn
from mpl_toolkits.mplot3d import Axes3D
from sklearn.datasets import load_breast_cancer, make_blobs
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from IPython.display import display
import matplotlib.pyplot as plt
import numpy as np
import matplotlib as mt
import pandas as pd X, y = mglearn.tools.make_handcrafted_dataset()
svm = SVC(kernel='rbf', C=100, gamma=0.1).fit(X, y)
mglearn.plots.plot_2d_separator(svm, X, eps=.5)
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
# plot support vectors
sv = svm.support_vectors_
print(sv)
# class labels of support vectors are given by the sign of the dual coefficients
sv_labels = svm.dual_coef_.ravel() > 0
mglearn.discrete_scatter(sv[:, 0], sv[:, 1], sv_labels, s=15, markeredgewidth=3)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
plt.show()

sklearn使用高斯核SVM显示支持向量的更多相关文章

  1. day-10 sklearn库实现SVM支持向量算法

    学习了SVM分类器的简单原理,并调用sklearn库,对40个线性可分点进行训练,并绘制出图形画界面. 一.问题引入 如下图所示,在x,y坐标轴上,我们绘制3个点A(1,1),B(2,0),C(2,3 ...

  2. 支持向量机(SVM)、支持向量回归(SVR)

    1.支持向量机( SVM )是一种比较好的实现了结构风险最小化思想的方法.它的机器学习策略是结构风险最小化原则 为了最小化期望风险,应同时最小化经验风险和置信范围) 支持向量机方法的基本思想: ( 1 ...

  3. SVM高斯核为何会将特征映射到无穷维?【转载】

    转自:https://www.zhihu.com/question/35602879 1.问题: SVM中,对于线性不可分的情况下,我们利用升维,把低维度映射到到维度让数据变得“更可能线性可分”,为了 ...

  4. SVM中径向基函数与高斯核的区别 Difference between RBF and Gaussian kernel in SVM

    Radial Basis Functions (RBFs) are set of functions which have same value at a fixed distance from a ...

  5. paper 5:支持向量机系列二: Support Vector —— 介绍支持向量机目标函数的 dual 优化推导,并得出“支持向量”的概念。

    paper 4中介绍了支持向量机,结果说到 Maximum Margin Classifier ,到最后都没有说“支持向量”到底是什么东西.不妨回忆一下上次最后一张图: 可以看到两个支撑着中间的 ga ...

  6. opencv源码学习: getGaussianKernel( 高斯核);

    参考: https://blog.csdn.net/u012633319/article/details/80921023 二维高斯核, 可以根据下面的公式推到为两个一维高斯核的乘积: 原型: /** ...

  7. springmvc上传图片并显示--支持多图片上传

    实现上传图片功能在Springmvc中很好实现.现在我将会展现完整例子. 开始需要在pom.xml加入几个jar,分别是: <dependency> <groupId>comm ...

  8. TSwitch 中文简繁显示支持(XE6 Android)

    说明: XE6 的 TSwitch 做了很多改进,包含多语显示处理,但 XE6 似乎只认定一种中文语系「zh」,它无法处理「zh_TW」.「zh_CN」.「zh_HK」.「zh_SG」等语系,不过可以 ...

  9. 通过js检测浏览器支持的字体,从而显示支持的字体,让用户选择。

    http://www.zhangxinxu.com/wordpress/2018/02/js-detect-suppot-font-family/ 本文根据张鑫旭文章. 字体函数: var dataF ...

随机推荐

  1. 行为型模式(七) 策略模式(Stragety)

    一.动机(Motivate) 在软件构建过程中,某些对象使用的算法可能多种多样,经常改变,如果将这些算法都编码到对象中,将会使对象变得异常复杂:而且有时候支持不使用的算法也是一个性能负担.如何在运行时 ...

  2. windows部署tomcat

    一.下载相应的JDK以及tomcat的版本 JDK:jdk-8u131-windows-x64 tomcat:apache-tomcat-8.5.23-windows-x64.zip 二.JDK的安装 ...

  3. php自定义函数之变量函数

    在之前的变量部份,我们学习了可变变量.可变函数仅仅是可变变量的一个变种.变形表达.大理石平台价格表 可变函数,我们也会称呼为变量函数.简单回顾一下之前的知识点: <?php  $hello =  ...

  4. Acwing P288 休息时间 题解

    Analysis 首先假设一天的第N小时与后一天的第一个小时不相连, 这种情况下DP转移比较好想 dp[i][j][0/1]dp[i][j][0/1]表示 考虑一天的前i个小时,已经休息了j小时,且第 ...

  5. suds

    Suds: 是一个轻量级的SOAP客户端 pip install suds 可以访问webservice 选择公网的Webservice,http://www.webxml.com.cn/webser ...

  6. [nginx]nginx的一个奇葩问题 500 Internal Server Error phpstudy2018 nginx虚拟主机配置 fastadmin常见问题处理

    [nginx]nginx的一个奇葩问题 500 Internal Server Error 解决方案 nginx 一直报500 Internal Server Error 错误,配置是通过phpstu ...

  7. 《挑战30天C++入门极限》新手入门:C/C++中枚举类型(enum)

        新手入门:C/C++中枚举类型(enum) 如果一个变量你需要几种可能存在的值,那么就可以被定义成为枚举类型.之所以叫枚举就是说将变量或者叫对象可能存在的情况也可以说是可能的值一一例举出来. ...

  8. Leetcode Majority Element系列 摩尔投票法

    先看一题,洛谷2397: 题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居然也不会,所以只好找你 题目描述 [h ...

  9. Java 输入流和字符串互相转换

    import java.io.BufferedReader; import java.io.ByteArrayInputStream; import java.io.InputStream; impo ...

  10. 页面截取字段和转码,页面截取字段时候需要进入JS

    截取字段    ${fn:substring(info.cpflmc,0,20)}${fn:length(info.cpflmc)>40?'...':''}             表头list ...