Flink原理(五)——容错机制
本文是博主阅读Flink官方文档以及《Flink基础教程》后结合自己理解所写,若有表达有误的地方欢迎大伙留言指出。
1. 前言
流式计算分为有状态和无状态两种情况,所谓状态就是计算过程中的中间值。对于无状态计算,会独立观察每个独立事件,并根据最后一个事件输出结果。什么意思?大白话举例:对于一个流式系统,接受到一系列的数字,当数字大于N则输出,这时候在此之前的数字的值、和等情况,压根不关心,只和最后这个大于N的数字相关,这就是无状态计算。什么是有状态计算了?想求过去一分钟内所有数字的和或者平均数等,这种需要保存中间结果的情况是有状态的计算。
当分布式计系统中引入状态计算时,就无可避免一致性的问题。为什么了?因为若是计算过程中出现故障,中间数据咋办了?若是不保存,那就只能重新从头计算了,不然怎么保证计算结果的正确性。这就是要求系统具有容错性了。
2. 一致性
谈到容错性,就没法避免一致性这个概念。所谓一致性就是:成功处理故障并恢复之后得到的结果与没有发生任何故障是得到的结果相比,前者的正确性。换句大白话,就是故障的发生是否影响得到的结果。在流处理过程,一致性分为3个级别[1]:
- at-most-once:至多一次。故障发生之后,计算结果可能丢失,就是无法保证结果的正确性;
- at-least-once:至少一次。计算结果可能大于正确值,但绝不会小于正确值,就是计算程序发生故障后可能多算,但是绝不可能少算;
- exactly-once:精确一次。系统保证发生故障后得到的计算结果的值和正确值一致;
Flink的容错机制保证了exactly-once,也可以选择at-least-once。Flink的容错机制是通过对数据流不停的做快照(snapshot)实现的。针对FLink的容错机制需要注意的是:要完全保证exactly-once,Flink的数据源系统需要有“重放”功能,什么意思了?且听下面慢慢道来。
3. 检查点(Checkpoint)
Flink做快照的过程是基于“轻量级异步快照”的算法,其核心思想就是在计算过程中保存中间状态和在数据流中对应的位置,至于如何实现的会后续的博客中会详细说明。这些保存的信息(快照)就相当于是系统的检查点(checkpoint)(类似于window系统发生死机等问题时恢复系统到某个时间点的恢复点),做snapshot也是做一个checkpoint。在系统故障恢复时,系统会从最新的一个checkpoint开始重新计算,对应的数据源也会在对应的位置“重放“。这里的“重放”可能会导致数据的二次输出,这点的处理也在后续的博客中说明。
3.1 屏障(Barriers)
在Flink做分布式快照过程中核心一个元素Barriers的使用。这些Barriers是在数据接入到Flink之初就注入到数据流中,并随着数据流向每个算子(operator,这里所说的算子不是指类似map()等具体意义上个的,指在JobGraph中优化后的“顶点”),这里需要说明的有两点:
- 算子对Barriers是免疫的,即Barriers是不参与计算的;
- Barriers和数据的相对位置是保持不变的,而且Barriers之间是线性递增的;
如下图所示,Barriers将将数据流分成了一个个数据集。值得提醒的是,当barriers流经算子时,会触发与checkpoint相关的行为,保存的barriers的位置和状态(中间计算结果)。

Update:checkpoint是由JobManager中的CheckpointCoordinator周期性触发,然后在Task侧生成barrier,具体为:在Source task(TaskManager中)中barrier会根据命令周期性的在原始数据中注入barrier,而对非source task则是遇到barrier做checkpoint,即非source task其做checkpoint的时间间隔也许不是周期的,影响因素较多。此外,每个算子做checkpoint的方式也许不同。
可以打个比方,在河上有个大坝(相当于算子),接上级通知(Flink中的JobManager)要统计水流量等信息,所以有人在上游定期(source task)放一根木头(barrier)到河中,当第一木头遇到大坝时,大坝就记下通过大坝木头的位置、水流量等相关情况,即做checkpoint(实际生活中不太可能),当第二木头遇到大坝时记下第一个木头和第二根木头之间的水流量等情况,不需要重开始计算。这里先不管故障了,不然就不好解释相同的水的“重放”问题了。
当一个算子有多个数据源时,又如何做checkpoint了?
如下图,从左往右一共4副图。当算子收到其中一个数据源的barriers,而未收到另一个数据源的barriers时(如左1图),会将先到barriers的数据源中的数据先缓冲起来,等待另一个barriers(如左2图),当收到两个barriers(如左3图)即接收到全部数据源的barrier时,会做checkpoint,保存barriers位置和状态,发射缓冲中的数据,释放一个对应的barriers。这里需要注意是,当缓存中数据没有被发射完时,是不会处理后续数据的,这样是为了保证数据的有序性。

这里其实有一点需要注意的是,因为系统设置checkpoint的方式是通过时间间隔的形式(enableCheckpointing(intervalTime)),所以会导致一个问题:当一个checkpoint所需时间远大于两次checkpoint之间的时间间隔时,就很有可能会导致后续的checkpoint会失败,若是这样情况比较严重时会导致任务失败,这样Flink系统的容错性的优势就等不到保证了,所以需要合理设计checkpoint间隔时间。
3.2 状态(State)
如下图所示,在一次snapshot中,算子会在接受到其数据源的所有barriers的以后snapshot它们的状态,然后在发射barriers到输出流中,直到最后所有的sink算子都完成snapshot才算完成一次snapshot。其中,在准备发射的barriers形成之前,state 形式是可以改变的,之后就不可以了。state的存贮方式是可以配置的,如HDFS,默认是在JobManager的内存中。

3.3 异步快照(asynchronous state snapshot)
上述描述中,需要等待算子接收到所有barriers后,开始做snapshot,存储对应的状态后,再进行下一次snapshot,其状态的存储是同步的,这样可能会造成因snapshot引起较大延时。可以让算子在存储快照时继续处理数据,让快照存储异步在后台运行。为此,算子必须能生成一个 state 对象,保证后续状态的修改不会改变这个 state 对象。例如 RocksDB 中使用的 copy-on-write(写时复制)类型的数据结构,即异步状态快照。对异步状态快照,其可以让算子接受到barriers后开始在后台异步拷贝其状态,而不必等待所有的barriers的到来。一旦后台的拷贝完成,将会通知JobManager。只有当所有的sink接收到这个barriers,和所有的有状态的算子都确认完成状态的备份时,一次snapshot才算完成。如何实现的,这点后续博客将仔细分析。
Ref:
[1]《Flink基础教程》
[2]https://ci.apache.org/projects/flink/flink-docs-release-1.6/internals/stream_checkpointing.html
Flink原理(五)——容错机制的更多相关文章
- 关于 Flink 状态与容错机制
Flink 作为新一代基于事件流的.真正意义上的流批一体的大数据处理引擎,正在逐渐得到广大开发者们的青睐.就从我自身的视角看,最近也是在数据团队把一些原本由 Flume.SparkStreaming. ...
- Flink学习(三)状态机制于容错机制,State与CheckPoint
摘自Apache官网 一.State的基本概念 什么叫State?搜了一把叫做状态机制.可以用作以下用途.为了保证 at least once, exactly once,Flink引入了State和 ...
- Flink资料(2)-- 数据流容错机制
数据流容错机制 该文档翻译自Data Streaming Fault Tolerance,文档描述flink在流式数据流图上的容错机制. ------------------------------- ...
- 总结Flink状态管理和容错机制
本文来自8月11日在北京举行的 Flink Meetup会议,分享来自于施晓罡,目前在阿里大数据团队部从事Blink方面的研发,现在主要负责Blink状态管理和容错相关技术的研发. 本文主要内容如 ...
- Flink状态管理和容错机制介绍
本文主要内容如下: 有状态的流数据处理: Flink中的状态接口: 状态管理和容错机制实现: 阿里相关工作介绍: 一.有状态的流数据处理# 1.1.什么是有状态的计算# 计算任务的结果不仅仅依赖于输入 ...
- Apache Flink - 数据流容错机制
Apache Flink提供了一种容错机制,可以持续恢复数据流应用程序的状态.该机制确保即使出现故障,程序的状态最终也会反映来自数据流的每条记录(只有一次). 从容错和消息处理的语义上(at leas ...
- Flink 容错机制与状态
简介 Apache Flink提供了一种容错机制,可以持续恢复数据流应用程序的状态. 该机制确保即使出现故障,经过恢复,程序的状态也会回到以前的状态. Flink 主持 at least once 语 ...
- Flink原理、实战与性能优化读书笔记
第一章 ApacheFlink介绍 一.Flink优势 1. 目前唯一同时支持高吞吐.低延迟.高性能的分布式流式数据处理框架 2. 支持事件事件概念 3. 支持有状态计算,保持了事件原本产生的时序性, ...
- 流式处理新秀Flink原理与实践
随着大数据技术在各行各业的广泛应用,要求能对海量数据进行实时处理的需求越来越多,同时数据处理的业务逻辑也越来越复杂,传统的批处理方式和早期的流式处理框架也越来越难以在延迟性.吞吐量.容错能力以及使用便 ...
随机推荐
- 570. Managers with at Least 5 Direct Reports 至少有5个直接汇报员工的经理
The Employee table holds all employees including their managers. Every employee has an Id, and there ...
- 通过ip远程控制电脑
现在,很多人都用了不止一台电脑,而同时操作两台电脑是一件比较麻烦的事情,所以,如果能够使用一台电脑的鼠标键盘显示器,去远程控制另一台电脑,那就方便多了. 远程计算机设置 1.先确保本地计算机和远程计算 ...
- 应用程序正常初始化(0xc0000135)失败。请单击“确定”,终止应用程序。
应用程序正常初始化(0xc0000135)失败.请单击“确定”,终止应用程序. 没有安装对应版本的.NET FRAMEWORK.
- .Net Core 定时任务TimeJob
转载自:https://blog.csdn.net/u013711462/article/details/53449799 定时任务 Pomelo.AspNetCore.TimedJob Pomelo ...
- ProtoStuff无法反序列化Deprecated注解成员问题记录
在开发过程中,遇到一个鬼畜的问题,在DO的某个成员上添加@Deprecated注解之后,通过ProtoStuff反序列化得到的DO中,这个成员一直为null:花了不少时间才定位这个问题,特此记录一下 ...
- 小程序常用操作,if,for,跳转,弹出提示
if <block wx:if="{{result.child_items}}"> ... </block> <block wx:else> . ...
- 如何创建Kafka客户端:Avro Producer和Consumer Client
1.目标 - Kafka客户端 在本文的Kafka客户端中,我们将学习如何使用Kafka API 创建Apache Kafka客户端.有几种方法可以创建Kafka客户端,例如最多一次,至少一次,以及一 ...
- Python中的数据类型、变量、字符编码、输入输出、注释
数据类型 number(数字) 用于存储类型,通常分为int.long.float.complex: int:32位机器上占32位,取值范围为-231 ~ 231 - 1:64位机器上占64位,取值范 ...
- DFS解决八皇后问题
2019-07-29 16:49:15 #include <bits/stdc++.h> using namespace std; ][]; int tot; int check(int ...
- 微信H5页面前端开发,大多数人都会遇到的几个兼容性坑
最近给公司微信公众号,写了微信h5业务页面,总结分享一下前端开发过程中的几个兼容性坑,项目直接拿的公司页面,所以下文涉及图片都模糊处理了. 1.ios端兼容input光标高度 问题详情描述:input ...