FWT-快速沃尔什变换
FWT-快速沃尔什变换
FWT有啥用啊
我们知道,FFT
可以解决多项式的卷积,即
\]
如果将操作符换一下,换成集合运算符
比如
\]
这时就不能使用FFT
了
但是FFT
使我们产生了一种想法
我们能不能用一种类似FFT
的方法,用另一个多项式来表示\(A,B\),然后再对应相乘,最后再变换回来呢
答案是可以的,这就是FWT
,即快速沃尔什变换
咋搞啊
我们以或运算举例:
我们按照定义,显然可以构造 \(FWT[A] = A' = \sum_{i=i|j}A_{j}\) ,来表示 \(j\) 满足二进制中 \(1\) 为 \(i\) 的子集。
那么显然会有 \(C_{i} = \sum_{i=j|k}A_{j}*B_{k} \Rightarrow FWT[C] = FWT[A] * FWT[B]\)
至于上面这个是怎么来的:
FWT[C][i]&=FWT[A][i]*FWT[B][i]\\
\sum_{j|i}C_j&=(\sum_{j|i}A_j)*(\sum_{j|i}B_j) \\
\sum_{j|i}C_j&=\sum_{j|i,k|i} A_jB_k\\
\sum_{j|i}C_j&=\sum_{j|i}\sum_{a|b=j}A_aB_b\\
C_j&=\sum_{a|b=j}A_aB_b
\end{aligned}
\]
这样就和上面我们想要的式子一样了。
一堆定义/结论
别问我怎么推的,我也不知道。
在这里有详细的证明。
通用性质
性质1:
\]
性质2:
定义\(\oplus\)为任意集合运算
\]
或运算
定义:
\]
正向运算:
\]
逆向运算:
\]
与运算
定义:
\]
正向运算:
\]
逆向运算:
\]
异或运算
定义:
令\(d(x)\)为\(x\)在二进制下拥有的1的数量
\]
正向运算:
\]
逆向运算:
\]
板子
- 按位或
- 按位与
- 按位异或
//by Harry_bh
void FWT1(long long a[],int len)
{
for(int mid=2;mid<=len;mid<<=1)
for(int i=0;i<len;i+=mid)
for(int j=i;j<i+(mid>>1);j++)a[j+(mid>>1)]+=a[j];
}
void IFWT1(long long a[],int len)
{
for(int mid=2;mid<=len;mid<<=1)
for(int i=0;i<len;i+=mid)
for(int j=i;j<i+(mid>>1);j++)a[j+(mid>>1)]-=a[j];
}
void FWT2(long long a[],int len)
{
for(int mid=2;mid<=len;mid<<=1)
for(int i=0;i<len;i+=mid)
for(int j=i;j<i+(mid>>1);j++)a[j]+=a[j+(mid>>1)];
}
void IFWT2(long long a[],int len)
{
for(int mid=2;mid<=len;mid<<=1)
for(int i=0;i<len;i+=mid)
for(int j=i;j<i+(mid>>1);j++)a[j]-=a[j+(mid>>1)];
}
void FWT3(long long a[],int len)
{
for(int mid=2;mid<=len;mid<<=1)
for(int i=0;i<len;i+=mid)
for(int j=i;j<i+(mid>>1);j++)
{
long long x=a[j],y=a[j+(mid>>1)];
a[j]=x+y,a[j+(mid>>1)]=x-y;
}
}
inline void IFWT3(long long a[],int len)
{
for(int mid=2;mid<=len;mid<<=1)
for(int i=0;i<len;i+=mid)
for(int j=i;j<i+(mid>>1);j++)
{
long long x=a[j],y=a[j+(mid>>1)];
a[j]=(x+y)>>1,a[j+(mid>>1)]=(x-y)>>1;
}
}
参考资料
FWT-快速沃尔什变换的更多相关文章
- FWT快速沃尔什变换学习笔记
FWT快速沃尔什变换学习笔记 1.FWT用来干啥啊 回忆一下多项式的卷积\(C_k=\sum_{i+j=k}A_i*B_j\) 我们可以用\(FFT\)来做. 甚至在一些特殊情况下,我们\(C_k=\ ...
- [学习笔记]FWT——快速沃尔什变换
解决涉及子集配凑的卷积问题 一.介绍 1.基本用法 FWT快速沃尔什变换学习笔记 就是解决一类问题: $f[k]=\sum_{i\oplus j=k}a[i]*b[j]$ 基本思想和FFT类似. 首先 ...
- 浅谈算法——FWT(快速沃尔什变换)
其实FWT我啥都不会,反正就是记一波结论,记住就好-- 具体证明的话,推荐博客:FWT快速沃尔什变换学习笔记 现有一些卷积,形如 \(C_k=\sum\limits_{i\lor j=k}A_i*B_ ...
- 知识点简单总结——FWT(快速沃尔什变换),FST(快速子集变换)
知识点简单总结--FWT(快速沃尔什变换),FST(快速子集变换) 闲话 博客园的markdown也太傻逼了吧. 快速沃尔什变换 位运算卷积 形如 $ f[ i ] = \sum\limits_{ j ...
- 初学FWT(快速沃尔什变换) 一点心得
FWT能解决什么 有的时候我们会遇到要求一类卷积,如下: Ci=∑j⊕k=iAj∗Bk\large C_i=\sum_{j⊕k=i}A_j*B_kCi=j⊕k=i∑Aj∗Bk此处乘号为普通乘法 ...
- FWT快速沃尔什变换例题
模板题 传送门 #include<bits/stdc++.h> #define ll long long #define max(a,b) ((a)>(b)?(a):(b)) #de ...
- FWT快速沃尔什变换——基于朴素数学原理的卷积算法
这是我的第一篇学习笔记,如有差错,请海涵... 目录 引子 卷积形式 算法流程 OR卷积 AND卷积 XOR卷积 模板 引子 首先,考虑这是兔子 数一数,会发现你有一只兔子,现在,我再给你一只兔子 再 ...
- FWT快速沃尔什变换
前言 学多项式怎么能错过\(FWT\)呢,然而这真是个毒瘤的东西,蒟蒻就只会背公式了\(\%>\_<\%\) 或卷积 \[\begin{aligned}\\ tf(A) = (tf(A_0 ...
- 关于快速沃尔什变换(FWT)的一点学习和思考
最近在学FWT,抽点时间出来把这个算法总结一下. 快速沃尔什变换(Fast Walsh-Hadamard Transform),简称FWT.是快速完成集合卷积运算的一种算法. 主要功能是求:,其中为集 ...
- 一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记
一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记 曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了--看来"学"完新东西不经常做题不写博客,就白学了 = = 我没啥智 ...
随机推荐
- Python 多进程池
def get_html(n): time.sleep(n) print("sub_progress success") return n # 多进程池 pool = multip ...
- JAVAWeb入门之JSP基础知识
也是到了考试周,很多课都结了,准备去学点新东西.随后就开始自学JAVAWeb. 要学习JAVAWeb,首先需下面的知识: a) HTML/CSS/JS(前端页面),XML,JSON,vue ...
- BCP 运行错误
记录下使用bcp导出csv文件时的错误: [Microsoft][ODBC SQL Server Driver][SQL Server]对象名 '***'无效问题的解决方案器 我们要对student数 ...
- Java面试题:Java中的集合及其继承关系
关于集合的体系是每个人都应该烂熟于心的,尤其是对我们经常使用的List,Map的原理更该如此.这里我们看这张图即可: 1.List.Set.Map是否继承自Collection接口? List.Set ...
- linux内核级同步机制--futex
在面试中关于多线程同步,你必须要思考的问题 一文中,我们知道glibc的pthread_cond_timedwait底层是用linux futex机制实现的. 理想的同步机制应该是没有锁冲突时在用户态 ...
- Java生鲜电商平台-库存管理设计与架构
Java生鲜电商平台-库存管理设计与架构 WMS的功能: 1.业务批次管理 该功能提供完善的物料批次信息.批次管理设置.批号编码规则设置.日常业务处理.报表查询,以及库存管理等综合批次管理功能,使企业 ...
- Java生鲜电商平台-系统报表设计与架构
Java生鲜电商平台-系统报表设计与架构 说明:任何一个运行的平台都需要一个很清楚的报表来显示,那么作为Java开源生鲜电商平台而言,我们应该如何设计报表呢?或者说我们希望报表来看到什么数据呢? ...
- Python基础24
import 与 from import 知乎上说的简洁明了,zhihu.com/question/38857862 from import, 导入之后就能拿来用了,直接用!到处用!
- Mysql使用ReplicationDriver驱动实现读写分离
数据库的主从复制环境已经配好,该要解决系统如何实现读写分离功能了.Mysql的jdbc驱动提供了一种实现ReplicationDriver. 1 数据库地址的两种写法 参考:https://dev.m ...
- Freemarker简单封装
Freemarker是曾经很流行的一个模板库,它是一种通用的模板库,不仅仅可以用来渲染html. 模板可以分为两类: 只能生成特殊类型文件的模板,如jinja.django.Thymeleaf.jad ...