MySQL实战45讲学习笔记:第十六讲
一、今日内容概要
在你开发应用的时候,一定会经常碰到需要根据指定的字段排序来显示结果的需求。还是以我们前面举例用过的市民表为例,假设你要查询城市是“杭州”的所有人名字,并且按
照姓名排序返回前 1000 个人的姓名、年龄。
假设这个表的部分定义是这样的:
CREATE TABLE `t` (
`id` int(11) NOT NULL,
`city` varchar(16) NOT NULL,
`name` varchar(16) NOT NULL,
`age` int(11) NOT NULL,
`addr` varchar(128) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `city` (`city`)
) ENGINE=InnoDB;
这时,你的 SQL 语句可以这么写:
select city,name,age from t where city='杭州' order by name limit 1000 ;
这个语句看上去逻辑很清晰,但是你了解它的执行流程吗?今天,我就和你聊聊这个语句是怎么执行的,以及有什么参数会影响执行的行为
二、全字段排序
前面我们介绍过索引,所以你现在就很清楚了,为避免全表扫描,我们需要在 city 字段加上索引。
1、全字段排序执行流程
在 city 字段上创建索引之后,我们用 explain 命令来看看这个语句的执行情况。
图 1 使用 explain 命令查看语句的执行情况
1、Using filesort是什么意思?
1、Extra 这个字段中的“Using filesort”表示的就是需要排序,
2、MySQL 会给每个线程分配一块内存用于排序,称为 sort_buffer。
为了说明这个 SQL 查询语句的执行过程,我们先来看一下 city 这个索引的示意图。
图 2 city 字段的索引示意图
从图中可以看到,满足 city='杭州’条件的行,是从 ID_X 到 ID_(X+N) 的这些记录。
通常情况下,这个语句执行流程如下所示 :
1. 初始化 sort_buffer,确定放入 name、city、age 这三个字段;
2. 从索引 city 找到第一个满足 city='杭州’条件的主键 id,也就是图中的 ID_X;
3. 到主键 id 索引取出整行,取 name、city、age 三个字段的值,存入 sort_buffer 中;
4. 从索引 city 取下一个记录的主键 id;
5. 重复步骤 3、4 直到 city 的值不满足查询条件为止,对应的主键 id 也就是图中的ID_Y;
6. 对 sort_buffer 中的数据按照字段 name 做快速排序;
7. 按照排序结果取前 1000 行返回给客户端。
2、全字段排序图解执行流程
我们暂且把这个排序过程,称为全字段排序,执行流程的示意图如下所示,下一篇文章中我们还会用到这个排序。
图 3 全字段排序
3、按 name 排序的动作都会在哪里完成?
1、图中“按 name 排序”这个动作,可能在内存中完成,
2、也可能需要使用外部排序,这取决于排序所需的内存和参数 sort_buffer_size。
3、sort_buffer_size,就是 MySQL 为排序开辟的内存(sort_buffer)的大小。如果要排序的数据量小于 sort_buffer_size,排序就在内存中完成。
4、但如果排序数据量太大,内存放不下,则不得不利用磁盘临时文件辅助排序。
1、如何确定一个排序语句是否使用了临时文件?
你可以用下面介绍的方法,来确定一个排序语句是否使用了临时文件。
/* 打开 optimizer_trace,只对本线程有效 */
SET optimizer_trace='enabled=on'; /* @a 保存 Innodb_rows_read 的初始值 */
select VARIABLE_VALUE into @a from performance_schema.session_status where variable_name = 'Innodb_rows_read'; /* 执行语句 */
select city, name,age from t where city='杭州' order by name limit 1000; /* 查看 OPTIMIZER_TRACE 输出 */
SELECT * FROM `information_schema`.`OPTIMIZER_TRACE`\G /* @b 保存 Innodb_rows_read 的当前值 */
select VARIABLE_VALUE into @b from performance_schema.session_status where variable_name = 'Innodb_rows_read'; /* 计算 Innodb_rows_read 差值 */
select @b-@a;
这个方法是通过查看 OPTIMIZER_TRACE 的结果来确认的,你可以从number_of_tmp_files 中看到是否使用了临时文件。
图 4 全排序的 OPTIMIZER_TRACE 部分结果
4、rowid 排序的 OPTIMIZER_TRACE 部分输出字段说明
1、sort_mode 里面的 packed_additional_fields 的意思是,排序过程对字符串做了“紧凑”处理。即使 name 字段的定义是 varchar(16),在排序过程中还是要按照实际长度来分配空间的。
2、同时,最后一个查询语句 select @b-@a 的返回结果是 4000,表示整个执行过程只扫描了 4000 行。
这里需要注意的是,为了避免对结论造成干扰,我把 internal_tmp_disk_storage_engine设置成 MyISAM。否则,select @b-@a 的结果会显示为 4001。
这是因为查询 OPTIMIZER_TRACE 这个表时,需要用到临时表,而internal_tmp_disk_storage_engine 的默认值是 InnoDB。如果使用的是 InnoDB 引擎的话,把数据从临时表取出来的时候,会让 Innodb_rows_read 的值加 1。
三、rowid 排序
在上面这个算法过程里面,只对原表的数据读了一遍,剩下的操作都是在 sort_buffer 和临时文件中执行的。但这个算法有一个问题,就是如果查询要返回的字段很多的话,那么
sort_buffer 里面要放的字段数太多,这样内存里能够同时放下的行数很少,要分成很多个临时文件,排序的性能会很差。
所以如果单行很大,这个方法效率不够好。
那么,如果 MySQL 认为排序的单行长度太大会怎么做呢?
接下来,我来修改一个参数,让 MySQL 采用另外一种算法。
SET max_length_for_sort_data = 16;
1、改变单行最大长度后有什么改变?
- 1、max_length_for_sort_data,是 MySQL 中专门控制用于排序的行数据的长度的一个参数。
- 2、它的意思是,如果单行的长度超过这个值,MySQL 就认为单行太大,要换一个算法。
- 3、city、name、age 这三个字段的定义总长度是 36,我把 max_length_for_sort_data 设置为 16,我们再来看看计算过程有什么改变。
- 4、新的算法放入 sort_buffer 的字段,只有要排序的列(即 name 字段)和主键 id。
1、改变后的流程
但这时,排序的结果就因为少了 city 和 age 字段的值,不能直接返回了,整个执行流程就变成如下所示的样子:
1. 初始化 sort_buffer,确定放入两个字段,即 name 和 id;
2. 从索引 city 找到第一个满足 city='杭州’条件的主键 id,也就是图中的 ID_X;
3. 到主键 id 索引取出整行,取 name、id 这两个字段,存入 sort_buffer 中;
4. 从索引 city 取下一个记录的主键 id;
5. 重复步骤 3、4 直到不满足 city='杭州’条件为止,也就是图中的 ID_Y;
6. 对 sort_buffer 中的数据按照字段 name 进行排序;
7. 遍历排序结果,取前 1000 行,并按照 id 的值回到原表中取出 city、name 和 age 三个字段返回给客户端。
2、图解改变后的流程
这个执行流程的示意图如下,我把它称为 rowid 排序。
图 5 rowid 排序
对比图 3 的全字段排序流程图你会发现,rowid 排序多访问了一次表 t 的主键索引,就是步骤 7。
需要说明的是,最后的“结果集”是一个逻辑概念,实际上 MySQL 服务端从排序后的sort_buffer 中依次取出 id,然后到原表查到 city、name 和 age 这三个字段的结果,不
需要在服务端再耗费内存存储结果,是直接返回给客户端的。
根据这个说明过程和图示,你可以想一下,这个时候执行 select @b-@a,结果会是多少呢?
现在,我们就来看看结果有什么不同。
首先,图中的 examined_rows 的值还是 4000,表示用于排序的数据是 4000 行。但是select @b-@a 这个语句的值变成 5000 了。
因为这时候除了排序过程外,在排序完成后,还要根据 id 去原表取值。由于语句是 limit1000,因此会多读 1000 行。
图 6 rowid 排序的 OPTIMIZER_TRACE 部分输出
3、rowid 排序的 OPTIMIZER_TRACE 部分输出字段说明
1、从 OPTIMIZER_TRACE 的结果中,你还能看到另外两个信息也变了。
2、sort_mode 变成了 <sort_key, rowid>,表示参与排序的只有 name 和 id 这两个字段。
3、number_of_tmp_files 变成 10 了,是因为这时候参与排序的行数虽然仍然是 4000行,但是每一行都变小了,因此需要排序的总数据量就变小了,需要的临时文件也相应地变少了。
四、全字段排序 VS rowid 排序
我们来分析一下,从这两个执行流程里,还能得出什么结论。
1、内存足够大会如何处理
如果 MySQL 实在是担心排序内存太小,会影响排序效率,才会采用 rowid 排序算法,
这样排序过程中一次可以排序更多行,但是需要再回到原表去取数据。
2、内存足够小会如何处理
如果 MySQL 认为内存足够大,会优先选择全字段排序,把需要的字段都放到 sort_buffer中,
这样排序后就会直接从内存里面返回查询结果了,不用再回到原表去取数据。这也就体现了 MySQL 的一个设计思想:如果内存够,就要多利用内存,尽量减少磁盘访问。
对于 InnoDB 表来说,rowid 排序会要求回表多造成磁盘读,因此不会被优先选择。这个结论看上去有点废话的感觉,但是你要记住它,下一篇文章我们就会用到。
1、是不是所有的 order by 都需要排序操作呢?
看到这里,你就了解了,MySQL 做排序是一个成本比较高的操作。那么你会问,是不是所有的 order by 都需要排序操作呢?如果不排序就能得到正确的结果,那对系统的消耗
会小很多,语句的执行时间也会变得更短。
其实,并不是所有的 order by 语句,都需要排序操作的。从上面分析的执行过程,我们可以看到,MySQL 之所以需要生成临时表,并且在临时表上做排序操作,其原因是原来
的数据都是无序的。
你可以设想下,如果能够保证从 city 这个索引上取出来的行,天然就是按照 name 递增排序的话,是不是就可以不用再排序了呢?
确实是这样的。
所以,我们可以在这个市民表上创建一个 city 和 name 的联合索引,对应的 SQL 语句是:
alter table t add index city_user(city, name);
作为与 city 索引的对比,我们来看看这个索引的示意图。
图 7 city 和 name 联合索引示意图
在这个索引里面,我们依然可以用树搜索的方式定位到第一个满足 city='杭州’的记录,并且额外确保了,接下来按顺序取“下一条记录”的遍历过程中,只要 city 的值是杭州,
name 的值就一定是有序的。
2、不需要排序的查询流程
这样整个查询过程的流程就变成了
1. 从索引 (city,name) 找到第一个满足 city='杭州’条件的主键 id;
2. 到主键 id 索引取出整行,取 name、city、age 三个字段的值,作为结果集的一部分直接返回;
3. 从索引 (city,name) 取下一个记录主键 id;
4. 重复步骤 2、3,直到查到第 1000 条记录,或者是不满足 city='杭州’条件时循环结束。
图 8 引入 (city,name) 联合索引后,查询语句的执行计划
3、不需要排序查询执行计划
可以看到,这个查询过程不需要临时表,也不需要排序。接下来,我们用 explain 的结果来印证一下
图 9 引入 (city,name) 联合索引后,查询语句的执行计划
从图中可以看到,Extra 字段中没有 Using filesort 了,也就是不需要排序了。而且由于(city,name) 这个联合索引本身有序,所以这个查询也不用把 4000 行全都读一遍,只要找
到满足条件的前 1000 条记录就可以退出了。也就是说,在我们这个例子里,只需要扫描1000 次。
4、这个语句的执行流程有没有可能进一步简化呢?
既然说到这里了,我们再往前讨论,这个语句的执行流程有没有可能进一步简化呢?不知道你还记不记得,我在第 5 篇文章《 深入浅出索引(下)》中,和你介绍的覆盖索引。
这里我们可以再稍微复习一下。覆盖索引是指,索引上的信息足够满足查询请求,不需要再回到主键索引上去取数据。
按照覆盖索引的概念,我们可以再优化一下这个查询语句的执行流程。
针对这个查询,我们可以创建一个 city、name 和 age 的联合索引,对应的 SQL 语句就是:
alter table t add index city_user_age(city, name, age);
1、查询语句的执行流程?
这时,对于 city 字段的值相同的行来说,还是按照 name 字段的值递增排序的,此时的查询语句也就不再需要排序了。这样整个查询语句的执行流程就变成了:
1. 从索引 (city,name,age) 找到第一个满足 city='杭州’条件的记录,取出其中的 city、name 和 age 这三个字段的值,作为结果集的一部分直接返回;
2. 从索引 (city,name,age) 取下一个记录,同样取出这三个字段的值,作为结果集的一部分直接返回;
3. 重复执行步骤 2,直到查到第 1000 条记录,或者是不满足 city='杭州’条件时循环结束。
图 10 引入 (city,name,age) 联合索引后,查询语句的执行流程
2、查询语句的执行计划
然后,我们再来看看 explain 的结果。
图 11 引入 (city,name,age) 联合索引后,查询语句的执行计划
可以看到,Extra 字段里面多了“Using index”,表示的就是使用了覆盖索引,性能上会快很多。
当然,这里并不是说要为了每个查询能用上覆盖索引,就要把语句中涉及的字段都建上联合索引,毕竟索引还是有维护代价的。这是一个需要权衡的决定。
五、小结
今天这篇文章,我和你介绍了 MySQL 里面 order by 语句的几种算法流程。
在开发系统的时候,你总是不可避免地会使用到 order by 语句。你心里要清楚每个语句的排序逻辑是怎么实现的,还要能够分析出在最坏情况下,每个语句的执行对系统资源的
消耗,这样才能做到下笔如有神,不犯低级错误。
最后,我给你留下一个思考题吧。
假设你的表里面已经有了 city_name(city, name) 这个联合索引,然后你要查杭州和苏州两个城市中所有的市民的姓名,并且按名字排序,显示前 100 条记录。如果 SQL 查询语
句是这么写的 :
mysql> select * from t where city in ('杭州'," 苏州 ") order by name limit 100;
那么,这个语句执行的时候会有排序过程吗,为什么?
如果业务端代码由你来开发,需要实现一个在数据库端不需要排序的方案,你会怎么实现呢?
进一步地,如果有分页需求,要显示第 101 页,也就是说语句最后要改成 “limit10000,100”, 你的实现方法又会是什么呢?
你可以把你的思考和观点写在留言区里,我会在下一篇文章的末尾和你讨论这个问题。感谢你的收听,也欢迎你把这篇文章分享给更多的朋友一起阅读。
六、上期问题时间
上期的问题是,当 MySQL 去更新一行,但是要修改的值跟原来的值是相同的,这时候MySQL 会真的去执行一次修改吗?还是看到值相同就直接返回呢?
这是第一次我们课后问题的三个选项都有同学选的,所以我要和你需要详细说明一下。
第一个选项是,MySQL 读出数据,发现值与原来相同,不更新,直接返回,执行结束。这里我们可以用一个锁实验来确认
假设,当前表 t 里的值是 (1,2)。
图 12 锁验证方式
session B 的 update 语句被 blocked 了,加锁这个动作是 InnoDB 才能做的,所以排除选项 1。
第二个选项是,MySQL 调用了 InnoDB 引擎提供的接口,但是引擎发现值与原来相同,不更新,直接返回。有没有这种可能呢?这里我用一个可见性实验来确认。
假设当前表里的值是 (1,2)。
图 13 可见性验证方式
session A 的第二个 select 语句是一致性读(快照读),它是不能看见 session B 的更新的。
现在它返回的是 (1,3),表示它看见了某个新的版本,这个版本只能是 session A 自己的update 语句做更新的时候生成。(如果你对这个逻辑有疑惑的话,可以回顾下第 8 篇文
章《事务到底是隔离的还是不隔离的?》中的相关内容)
所以,我们上期思考题的答案应该是选项 3,即:InnoDB 认真执行了“把这个值修改成(1,2)"这个操作,该加锁的加锁,该更新的更新。
然后你会说,MySQL 怎么这么笨,就不会更新前判断一下值是不是相同吗?如果判断一下,不就不用浪费 InnoDB 操作,多去更新一次了?
其实 MySQL 是确认了的。只是在这个语句里面,MySQL 认为读出来的值,只有一个确定的 (id=1), 而要写的是 (a=3),只从这两个信息是看不出来“不需要修改”的。
作为验证,你可以看一下下面这个例子。
图 14 可见性验证方式 -- 对照
七、补充说明:
上面我们的验证结果都是在 binlog_format=statement 格式下进行的。
@didiren 补充了一个 case, 如果是 binlog_format=row 并且binlog_row_image=FULL 的时候,由于 MySQL 需要在 binlog 里面记录所有的字段,
所以在读数据的时候就会把所有数据都读出来了。
根据上面说的规则,“既然读了数据,就会判断”, 因此在这时候,select * from twhere id=1,结果就是“返回 (1,2)”。
同理,如果是 binlog_row_image=NOBLOB, 会读出除 blob 外的所有字段,在我们这个例子里,结果还是“返回 (1,2)”。
对应的代码如图 15 所示。这是 MySQL 5.6 版本引入的,在此之前我没有看过。所以,特此说明。
图 15 binlog_row_image=FULL 读字段逻辑
类似的,@mahonebags 同学提到了 timestamp 字段的问题。结论是:如果表中有timestamp 字段而且设置了自动更新的话,那么更新“别的字段”的时候,MySQL 会读
入所有涉及的字段,这样通过判断,就会发现不需要修改。
这两个点我会在后面讲更新性能的文章中再展开。
八、经典留言
1、某、人
1、回答下@发条橙子同学的问题:
问题一:
1)无条件查询如果只有order by create_time,即便create_time上有索引,也不会使用到。
因为优化器认为走二级索引再去回表成本比全表扫描排序更高。
所以选择走全表扫描,然后根据老师讲的两种方式选择一种来排序
2)无条件查询但是是order by create_time limit m.如果m值较小,是可以走索引的.
因为优化器认为根据索引有序性去回表查数据,然后得到m条数据,就可以终止循环,那么成本比全表扫描小,则选择走二级索引。
即便没有二级索引,mysql针对order by limit也做了优化,采用堆排序。这部分老师明天会讲
问题二:
如果是group by a,a上不能使用索引的情况,是走rowid排序。
如果是group by limit,不能使用索引的情况,是走堆排序
如果是只有group by a,a上有索引的情况,又根据选取值不同,索引的扫描方式又有不同
select * from t group by a --走的是索引全扫描,至于这里为什么选择走索引全扫描,还需要老师解惑下
select a from t group by a --走的是索引松散扫描,也就说只需要扫描每组的第一行数据即可,不用扫描每一行的值
问题三:
bigint和int加数字都不影响能存储的值。
bigint(1)和bigint(19)都能存储2^64-1范围内的值,int是2^32-1。只是有些前端会根据括号里来截取显示而已。建议不加varchar()就必须带,因为varchar()括号里的数字代表能存多少字符。假设varchar(2),就只能存两个字符,不管是中文还是英文。目前来看varchar()这个值可以设得稍稍大点,因为内存是按照实际的大小来分配内存空间的,不是按照值来预分配的。
2、老师我有几个问题:
1.我还是想在确认之前问的问题。一个长连接,一条sql申请了sort_buffer_size等一系列的会话级别的内存,sql成功执行完,该连接变为sleep状态。这些内存只是内容会被情况,但是占用的内存空间不会释放?
2.假设要给a值加1,执行器先找引擎取a=1的行,然后执行器给a+1,在调用接口写入a+1了数据。那么加锁不应该是在执行器第一次去取数据时,引擎层就加该加的锁?为什么要等到第二次调用写入数据时,才加锁。第一次和第二次之间,难道不会被其他事务修改吗?如果没有锁保证
3.始终没太明白堆排序是采用的什么算法使得只需要对limit的数据进行排序就可以,而不是排序所有的数据在取前m条。--不过这里期待明天的文章
3、作者回复: 发条橙子同学的问题:
问题1:你回答得比我回复的答案还好!
MySQL实战45讲学习笔记:第十六讲的更多相关文章
- MySQL实战45讲学习笔记:第六讲
一.今日内容概要 今天我要跟你聊聊 MySQL 的锁.数据库锁设计的初衷是处理并发问题.作为多用户共享的资源,当出现并发访问的时候,数据库需要合理地控制资源的访问规则.而锁就是用来实现这些访问规则的重 ...
- Nodejs学习笔记(十六)--- Pomelo介绍&入门
目录 前言&介绍 安装Pomelo 创建项目并启动 创建项目 项目结构说明 启动 测试连接 聊天服务器 新建gate和chat服务器 配置master.json 配置servers.json ...
- Nodejs学习笔记(十六)—Pomelo介绍&入门
前言&介绍 Pomelo:一个快速.可扩展.Node.js分布式游戏服务器框架 从三四年前接触Node.js开始就接触到了Pomelo,从Pomelo最初的版本到现在,总的来说网易出品还算不错 ...
- python3.4学习笔记(二十六) Python 输出json到文件,让json.dumps输出中文 实例代码
python3.4学习笔记(二十六) Python 输出json到文件,让json.dumps输出中文 实例代码 python的json.dumps方法默认会输出成这种格式"\u535a\u ...
- Android学习笔记(十六)——数据库操作(上)
//此系列博文是<第一行Android代码>的学习笔记,如有错漏,欢迎指正! Android 为了让我们能够更加方便地管理数据库,专门提供了一个 SQLiteOpenHelper帮助类, ...
- Dynamic CRM 2013学习笔记(十六)用JS控制Tab可见,可用
一个Form里经常会有好几个Tab,有时要根据一些条件设置哪些Tab可用,可见.下面就介绍下如何用JS对Tab进行控制. 1. 控制可见 function setTabVisableByName( ...
- JavaScript学习笔记(十六)——面向对象编程
在学习廖雪峰前辈的JavaScript教程中,遇到了一些需要注意的点,因此作为学习笔记列出来,提醒自己注意! 如果大家有需要,欢迎访问前辈的博客https://www.liaoxuefeng.com/ ...
- 《SAS编程与数据挖掘商业案例》学习笔记之十六
<SAS编程与数据挖掘商业案例>学习笔记,本次重点:sas宏变量 内容包含:宏变量.宏函数.宏參数.通配函数.字符函数.计算函数.引用函数.宏语句.宏应用 1.宏触发器: %name-to ...
- MySQL实战45讲学习笔记:第二十一讲
一.引子 在上一篇文章中,我和你介绍了间隙锁和 next-key lock 的概念,但是并没有说明加锁规则.间隙锁的概念理解起来确实有点儿难,尤其在配合上行锁以后,很容易在判断是否会出现锁等待的问题上 ...
- MySQL实战45讲学习笔记:第八讲
一.今日内容概要 我在第 3 篇文章和你讲事务隔离级别的时候提到过,如果是可重复读隔离级别,事务 T 启动的时候会创建一个视图 read-view,之后事务 T 执行期间,即使有其他事务修改了数据,事 ...
随机推荐
- docker 更新内存限制步骤
停止容器: docker stop id 更新配额: docker update -m 80G id 内存参数和大小 容器ID重启容器:docker start id
- vue中toggle切换的3种写法
前言:查看下面代码,在任意编辑器中直接复制粘贴运行即可 1:非动态组件(全局注册2个组件,借用v-if指令和三元表达式) <!DOCTYPE html> <html> < ...
- Chrome 手动安装.crx插件
在网上自己下载.crx的离线插件文件.或者通过朋友打包.crx文件.打包方式可参照Chrome 打包扩展程序 方法一: 打开Chrome浏览器,地址栏输入 chrome://extensions/ 将 ...
- 【10】Nginx:后面有无 / 的区别
写在前面的话 在 nginx 中,我们很多时候都有一个疑问,在 proxy_pass 或者 root 或者 location 后面需不需要加上 /,加和不加有啥区别. root / alias 后面 ...
- Beats Elastic中的Auditbeat使用介绍
Auditbeat使用介绍 Auditbeat是一种轻量级的数据收集器,您可以将其安装在服务器上,以审核系统上用户和进程的活动. 例如,您可以使用Auditbeat从Linux Audit Frame ...
- Linux(CentOS)启动时自动执行脚本(rc.local)
下面说说通过rc.local文件进行开机启动 1.首先创建一个启动脚本,这里以启动docker为例 创建 docker-startup.sh 脚本 #! /bin/bash /usr/bin/mk-d ...
- Java Scanner 类——获取用户的输入
创建Scanner对象语法 Scanner scan = new Scanner(System.in); 使用next()获取输入的字符串 import java.util.Scanner; publ ...
- virtualbox的安装与使用、安装镜像创建虚拟机
1.官网:https://www.virtualbox.org/ 然后呢,点击下载: 开始安装virtualbox: 双击安装.详细安装过程见:https://baijiahao.baidu.com/ ...
- 编辑修改json文件(PSCustomObject)
#$uname:用户 #$mails:需要绑定或删除的邮箱,如有多个邮箱,中间以,为分隔符,无需添加引号 #######################脚本开始#################### ...
- Java学习——注解
Java学习——注解 摘要:本文主要介绍了Java开发常用的注解,以及如何自定义注解. 部分内容来自以下博客: https://www.cnblogs.com/Qian123/p/5256084.ht ...