[LeetCode] 730. Count Different Palindromic Subsequences 计数不同的回文子序列的个数
Given a string S, find the number of different non-empty palindromic subsequences in S, and return that number modulo 10^9 + 7
.
A subsequence of a string S is obtained by deleting 0 or more characters from S.
A sequence is palindromic if it is equal to the sequence reversed.
Two sequences A_1, A_2, ...
and B_1, B_2, ...
are different if there is some i
for which A_i != B_i
.
Example 1:
Input:
S = 'bccb'
Output: 6
Explanation:
The 6 different non-empty palindromic subsequences are 'b', 'c', 'bb', 'cc', 'bcb', 'bccb'.
Note that 'bcb' is counted only once, even though it occurs twice.
Example 2:
Input:
S = 'abcdabcdabcdabcdabcdabcdabcdabcddcbadcbadcbadcbadcbadcbadcbadcba'
Output: 104860361
Explanation:
There are 3104860382 different non-empty palindromic subsequences, which is 104860361 modulo 10^9 + 7.
Note:
- The length of
S
will be in the range[1, 1000]
. - Each character
S[i]
will be in the set{'a', 'b', 'c', 'd'}
.
这道题给了给了我们一个字符串,让求出所有的非空回文子序列的个数,虽然这题限制了字符只有四种,但还是按一般的情况来解吧,可以有 26 个字母。说最终结果要对一个很大的数字取余,这就暗示了结果会是一个很大的值,对于这种问题一般都是用动态规划 Dynamic Programming 或者是带记忆数组 memo 的递归来解,二者的本质其实是一样的。先来看带记忆数组 memo 的递归解法,这种解法的思路是一层一层剥洋葱,比如 "bccb",按照字母来剥,先剥字母b,确定最外层 "b _ _ b",这会产生两个回文子序列 "b" 和 "bb",然后递归进中间的部分,把中间的回文子序列个数算出来加到结果 res 中,中间的 "cc" 调用递归会返回2,两边都加上b,会得到 "bcb", "bccb",此时结果 res 为4。然后开始剥字母c,找到最外层 "cc",此时会产生两个回文子序列 "c" 和 "cc",由于中间没有字符串了,所以递归返回0,最终结果 res 为6,按照这种方法就可以算出所有的回文子序列了。
建立一个二维数组 chars,外层长度为 26,里面放一个空数组。这是为了统计每个字母在原字符串中出现的位置,然后定义一个二维记忆数组 memo,其中 memo[i][j] 表示第i个字符到第j个字符之间的子字符串中的回文子序列的个数,初始化均为0。然后遍历字符串S,将每个字符的位置加入其对应的数组中,比如对于 "bccb",那么有:
b -> {0, 3}
c -> {1, 2}
然后在 [0, n] 的范围内调用递归函数,在递归函数中,首先判断如果 start 大于等于 end,返回0。如果当前位置在 memo 的值大于0,说明当前情况已经计算过了,直接返回 memo 数组中的值。否则进行所有字母的遍历,如果某个字母对应的数组中没有值,说明该字母不曾在字符串中出现,跳过。然后在字母数组中查找第一个不小于 start 的位置,查找第一个小于 end 的位置,当前循环中,start 为0,end 为4,当前处理字母b,new_start 指向0,new_end 指向3,如果当前 new_start 指向了 end(),或者其指向的位置大于 end,说明当前范围内没有字母b,直接跳过,否则结果 res 自增1,因为此时 new_start 存在,至少有个单个的字母b,也可以当作回文子序列,然后看 new_start 和 new_end 如果不相同,说明两者各指向了不同的b,此时 res 应自增1,因为又增加了一个新的回文子序列 "bb",下面就是对中间部分调用递归函数了,把返回值加到结果 res 中。此时字母b就处理完了,现在处理字母c,此时的 start 还是0,end 还是4,new_start 指向1,new_end 指向2,跟上面的分析相同,new_start 在范围内,结果自增1,因为加上了 "c",然后 new_start 和 new_end 不同,结果 res 再自增1,因为加上了 "cc",其中间没有字符了,调用递归的结果是0,for 循环结束,将 memo[start][end] 的值对超大数取余,并将该值返回即可,参见代码如下:
解法一:
class Solution {
public:
int countPalindromicSubsequences(string S) {
int n = S.size();
vector<vector<int>> chars(, vector<int>());
vector<vector<int>> memo(n + , vector<int>(n + , ));
for (int i = ; i < n; ++i) {
chars[S[i] - 'a'].push_back(i);
}
return helper(S, chars, , n, memo);
}
int helper(string S, vector<vector<int>>& chars, int start, int end, vector<vector<int>>& memo) {
if (start >= end) return ;
if (memo[start][end] > ) return memo[start][end];
long res = ;
for (int i = ; i < ; ++i) {
if (chars[i].empty()) continue;
auto new_start = lower_bound(chars[i].begin(), chars[i].end(), start);
auto new_end = lower_bound(chars[i].begin(), chars[i].end(), end) - ;
if (new_start == chars[i].end() || *new_start >= end) continue;
++res;
if (new_start != new_end) ++res;
res += helper(S, chars, *new_start + , *new_end, memo);
}
memo[start][end] = res % int(1e9 + );
return memo[start][end];
}
};
我们再来看一种迭代的写法,使用一个二维的 dp 数组,其中 dp[i][j] 表示子字符串 [i, j] 中的不同回文子序列的个数,初始化 dp[i][i] 为1,因为任意一个单个字符就是一个回文子序列,其余均为0。这里的更新顺序不是正向,也不是逆向,而是斜着更新,对于 "bccb" 的例子,其最终 dp 数组如下,可以看到其更新顺序分别是红-绿-蓝-橙。
b c c b
b 1
c 0
c 0
b 0 0 0
这样更新的好处是,更新当前位置时,其左,下,和左下位置的 dp 值均已存在,而当前位置的 dp 值需要用到这三个位置的 dp 值。观察上面的 dp 数组,可以发现当 S[i] 不等于 S[j] 的时候,dp[i][j] = dp[i][j - 1] + dp[i + 1][j] - dp[i + 1][j - 1],即当前的 dp 值等于左边值加下边值减去左下值,因为算左边值的时候包括了左下的所有情况,而算下边值的时候也包括了左下值的所有情况,那么左下值就多算了一遍,所以要减去。而当 S[i] 等于 S[j] 的时候,情况就比较复杂了,需要分情况讨论,因为不知道中间还有几个和 S[i] 相等的值。举个简单的例子,比如 "aba" 和 "aaa",当 i = 0, j = 2 的时候,两个字符串均有 S[i] == S[j],此时二者都新增两个子序列 "a" 和 "aa",但是 "aba" 中间的 "b" 就可以加到结果 res 中,而 "aaa" 中的 "a" 就不能加了,因为和外层的单独 "a" 重复了。我们的目标就要找到中间重复的 "a"。所以让 left = i + 1, right = j - 1,然后对 left 进行 while 循环,如果 left <= right, 且 S[left] != S[i] 的时候,left 向右移动一个;同理,对 right 进行 while 循环,如果 left <= right, 且 S[right] != S[i] 的时候,left 向左移动一个。这样最终 left 和 right 值就有三种情况:
1. 当 left > righ 时,说明中间没有和 S[i] 相同的字母了,就是 "aba" 这种情况,那么就有 dp[i][j] = dp[i + 1][j - 1] * 2 + 2,其中 dp[i + 1][j - 1] 是中间部分的回文子序列个数,为啥要乘2呢,因为中间的所有子序列可以单独存在,也可以再外面包裹上字母a,所以是成对出现的,要乘2。加2的原因是外层的 "a" 和 "aa" 也要统计上。
2. 当 left = right 时,说明中间只有一个和 S[i] 相同的字母,就是 "aaa" 这种情况,那么有 dp[i][j] = dp[i + 1][j - 1] * 2 + 1,其中乘2的部分跟上面的原因相同,加1的原因是单个字母 "a" 的情况已经在中间部分算过了,外层就只能再加上个 "aa" 了。
3. 当 left < right 时,说明中间至少有两个和 S[i] 相同的字母,就是 "aabaa" 这种情况,那么有 dp[i][j] = dp[i + 1][j - 1] * 2 - dp[left + 1][right - 1],其中乘2的部分跟上面的原因相同,要减去 left 和 right 中间部分的子序列个数的原因是其被计算了两遍,要将多余的减掉。比如说对于 "aabaa",当检测到 S[0] == S[4] 时,是要根据中间的 "aba" 的回文序列个数来计算,共有四种,分别是 "a", "b", "aa", "aba",将其分别在左右两边加上a的话,可以得到 "aaa", "aba", "aaaa", "aabaa",我们发现 "aba" 出现了两次了,这就是要将 dp[2][2] (left = 1, right = 3) 减去的原因。
参见代码如下:
解法二:
class Solution {
public:
int countPalindromicSubsequences(string S) {
int n = S.size(), M = 1e9 + ;
vector<vector<int>> dp(n, vector<int>(n, ));
for (int i = ; i < n; ++i) dp[i][i] = ;
for (int len = ; len < n; ++len) {
for (int i = ; i < n - len; ++i) {
int j = i + len;
if (S[i] == S[j]) {
int left = i + , right = j - ;
while (left <= right && S[left] != S[i]) ++left;
while (left <= right && S[right] != S[i]) --right;
if (left > right) {
dp[i][j] = dp[i + ][j - ] * + ;
} else if (left == right) {
dp[i][j] = dp[i + ][j - ] * + ;
} else {
dp[i][j] = dp[i + ][j - ] * - dp[left + ][right - ];
}
} else {
dp[i][j] = dp[i][j - ] + dp[i + ][j] - dp[i + ][j - ];
}
dp[i][j] = (dp[i][j] < ) ? dp[i][j] + M : dp[i][j] % M;
}
}
return dp[][n - ];
}
};
讨论:这道题确实是一道很难的题,和它类似的题目还有几道,虽然那些题有的还有非 DP 解法,但是 DP 解法始终是核心的,也是我们最应该掌握的方法。首先要分清子串和子序列的题,个人感觉子序列要更难一些。在之前那道 Longest Palindromic Subsequence 中要求最长的回文子序列,需要逆向遍历 dp 数组,当 s[i] 和 s[j] 相同时,长度为中间部分的 dp 值加2,否则就是左边值和下边值中的较大值,因为是子序列,不匹配就可以忽略当前字符。而对于回文子串的问题,比如 Longest Palindromic Substring 和 Palindromic Substrings,一个是求最长的回文子串,一个是求所有的回文子串个数,他们的 dp 定义是看子串 [i, j] 是否是回文串,求最长回文子串就是维护一个最大值,不停用当前回文子串的长度更新这个最大值,同时更新最大值的左右边界。而求所有回文子串的个数就是如果当前 dp[i][j] 判断是回文串,计数器就自增1。而判断当前 dp[i][j] 是否是回文串的核心就是 s[i]==s[j],且 i,j 中间没有字符了,或者中间的 dp 值为 true。
Github 同步地址:
https://github.com/grandyang/leetcode/issues/730
类似题目:
Longest Palindromic Subsequence
参考资料:
https://leetcode.com/problems/count-different-palindromic-subsequences/
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] 730. Count Different Palindromic Subsequences 计数不同的回文子序列的个数的更多相关文章
- [LeetCode] Count Different Palindromic Subsequences 计数不同的回文子序列的个数
Given a string S, find the number of different non-empty palindromic subsequences in S, and return t ...
- leetcode 730 Count Different Palindromic Subsequences
题目链接: https://leetcode.com/problems/count-different-palindromic-subsequences/description/ 730.Count ...
- LN : leetcode 730 Count Different Palindromic Subsequences
lc 730 Count Different Palindromic Subsequences 730 Count Different Palindromic Subsequences Given a ...
- 【LeetCode】730. Count Different Palindromic Subsequences 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 记忆化搜索 动态规划 日期 题目地址:https:/ ...
- 730. Count Different Palindromic Subsequences
Given a string S, find the number of different non-empty palindromic subsequences in S, and return t ...
- leetcode 730. 统计不同回文子序列(区间dp,字符串)
题目链接 https://leetcode-cn.com/problems/count-different-palindromic-subsequences/ 题意 给定一个字符串,判断这个字符串中所 ...
- [Swift]LeetCode730. 统计不同回文子字符串 | Count Different Palindromic Subsequences
Given a string S, find the number of different non-empty palindromic subsequences in S, and return t ...
- [LeetCode] Longest Palindromic Subsequence 最长回文子序列
Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...
- [LeetCode] 516. Longest Palindromic Subsequence 最长回文子序列
Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...
随机推荐
- N!(hdu1042)
N! Given an integer N(0 ≤ N ≤ 10000), your task is to calculate N! Input One N in one line, process ...
- JeeSite | 数据权限应用
中午吃饭时看了一下陆毅版的<三国>,刚好看的是蜀军缺粮,诸葛亮让王平去劫司马懿的粮.司马懿看蜀军用木牛流马运量很方便,就抢了蜀军的木牛流马仿制了一批,结果司马懿用它运粮时,被王平冒充司马懿 ...
- TensorFlow函数: tf.stop_gradient
停止梯度计算. 在图形中执行时,此操作按原样输出其输入张量. 在构建计算梯度的操作时,这个操作会阻止将其输入的共享考虑在内.通常情况下,梯度生成器将操作添加到图形中,通过递归查找有助于其计算的输入来计 ...
- ubuntu16.04 下anaconda3安装教程
贴一个成功的连接: https://blog.csdn.net/u012243626/article/details/82469174
- Filebeat和pipleline processor-不部署logstash,实现对数据的处理
利用ingest node所提供的Pipeline帮我们对数据进行处理. 在Elasticsearch中的配置文件elasticsearch.yml文件中配置:node.ingest: true in ...
- C#,NPOI,Export Generic T Data
1.Nuget 下载NPOI; Install-package NPOI -version 2.4.1 2.下载EF install-package entityframework -version ...
- .NetCore+WebUploader实现大文件分片上传
项目要求通过网站上传大文件,比如视频文件,通过摸索实现了文件分片来上传,然后后台进行合并. 使用了开源的前台上传插件WebUploader(http://fex.baidu.com/webupload ...
- NET Excel转换为集合对象
1.仅适用于规则Excel:表头和数据一一对应 2.涉及到Excel转换为集合对象的部分代码,完整npoi帮助类点击查看 /// <summary> /// 默认把excel第一个shee ...
- 纯 JS 设置文本框的默认提示
HTML5 中有个新特性叫 placeholder,一般用它来描述输入字段的预期值,适用于 text.search.password 等类型的 input 以及 textarea.示例如下: < ...
- mvc 返回json格式时间格式化
protected override JsonResult Json(object data, string contentType, System.Text.Encoding contentEnco ...