高斯模糊是图像模糊处理中非常经典和常见的一种算法,也是Bloom屏幕效果的基础。

实现高斯模糊同样用到了卷积的概念,关于卷积的概念和原理详见我的另一篇博客:

https://www.cnblogs.com/koshio0219/p/11137155.html

通过高斯方程计算出的卷积核称为高斯核,一个5*5的高斯核对它进行权重归一化如下:

0.0030 0.0133 0.0219 0.0133 0.0030
0.0133 0.0596 0.0983 0.0596 0.0133
0.0219 0.0983 0.1621 0.0983 0.0219
0.0133 0.0596 0.0983 0.0596 0.0133
0.0030 0.0133 0.0219 0.0133 0.0030

通过表也可以很清楚的看到,离原点越近的点模糊程度影响越大,反之越小。

为了优化计算,可以将这个5*5矩阵简化为两个矩阵分别计算,得到的效果是相同的。

它们分别是一个1*5的横向矩阵和一个5*1的纵向矩阵,这样我们只需要对横纵向矩阵分别进行一次采样既可,这样可以很大程度的减少计算量。

拆分之后结果如下:

我们发现,最终的计算只需要记录3个权重值既可,它们是weight[3]={0.4026,0.2442,0.0545};

具体实现:

1.实现调整高斯模糊参数的脚本。

为了进一步优化计算,这里加入了降采样系数,模糊范围缩放;为此,需要在外部增加模糊采样的迭代次数,具体如下:

 using UnityEngine;

 public class GaussianBlurCtrl : ScreenEffectBase
{
private const string _BlurSize = "_BlurSize";//只有模糊范围需要在GPU中计算 [Range(, )]
public int iterations = ;//迭代次数
[Range(0.2f, )]
public float blurSize = 0.6f;//模糊范围
[Range(, )]
public int downSample = ;//降采样系数 private void OnRenderImage(RenderTexture source, RenderTexture destination)
{
if (Material != null)
{
//得到屏幕的渲染纹理后直接除以降采样系数以成倍减少计算量,但过大时模糊效果不佳
int rtw = source.width/downSample;
int rth = source.height/downSample; RenderTexture buffer0 = RenderTexture.GetTemporary(rtw, rth, );
buffer0.filterMode = FilterMode.Bilinear; Graphics.Blit(source, buffer0); //利用迭代次数对模糊范围加以控制,用到了类似于双缓冲的方式对纹理进行处理
for (int i = ; i < iterations; i++)
{
//设置采样范围,根据迭代次数范围增加,之后会与纹理坐标进行乘积操作,固基础值为1
Material.SetFloat(_BlurSize, blurSize*i+); RenderTexture buffer1 = RenderTexture.GetTemporary(rtw, rth, );
Graphics.Blit(buffer0, buffer1, Material, );
//每次处理完立即释放相应缓存,因为Unity内部已经对此做了相应的优化
RenderTexture.ReleaseTemporary(buffer0);
buffer0 = RenderTexture.GetTemporary(rtw, rth, );
Graphics.Blit(buffer1, buffer0,Material, );
RenderTexture.ReleaseTemporary(buffer1);
}
Graphics.Blit(buffer0, destination);
RenderTexture.ReleaseTemporary(buffer0);
}
else
Graphics.Blit(source, destination);
}
}

基类脚本见:

https://www.cnblogs.com/koshio0219/p/11131619.html

2.在Shader中分别进行横向和纵向的模糊计算,分为两个Pass进行,具体如下:

 Shader "MyUnlit/GaussianBlur"
{
Properties
{
_MainTex ("Texture", 2D) = "white" {}
}
SubShader
{
Tags { "RenderType"="Opaque" } //CGINCLUDE中的代码可被其他Pass重复调用,用于简化不必要的重复代码
CGINCLUDE #pragma multi_compile_fog
#include "UnityCG.cginc" struct appdata
{
float4 vertex : POSITION;
float2 uv : TEXCOORD0;
}; struct v2f
{
half2 uv[] : TEXCOORD0;
UNITY_FOG_COORDS()
float4 pos : SV_POSITION;
}; sampler2D _MainTex;
float4 _MainTex_TexelSize;
float _BlurSize; //用于计算纵向模糊的纹理坐标元素
v2f vert_v(appdata v)
{
v2f o;
o.pos = UnityObjectToClipPos(v.vertex);
half2 uv = v.uv; //以扩散的方式对数组进行排序,只偏移y轴,其中1和2,3和4分别位于原始点0的上下,且距离1个单位和2个像素单位
//得到的最终偏移与模糊范围的控制参数进行乘积
o.uv[] = uv;
o.uv[] = uv + float2(0.0, _MainTex_TexelSize.y*1.0)*_BlurSize;
o.uv[] = uv - float2(0.0, _MainTex_TexelSize.y*1.0)*_BlurSize;
o.uv[] = uv + float2(0.0, _MainTex_TexelSize.y*2.0)*_BlurSize;
o.uv[] = uv - float2(0.0, _MainTex_TexelSize.y*2.0)*_BlurSize; UNITY_TRANSFER_FOG(o, o.vertex);
return o;
} //用于计算横向模糊的纹理坐标元素
v2f vert_h(appdata v)
{
v2f o;
o.pos = UnityObjectToClipPos(v.vertex);
half2 uv = v.uv; //与上面同理,只不过是x轴向的模糊偏移
o.uv[] = uv;
o.uv[] = uv + float2( _MainTex_TexelSize.x*1.0,0.0)*_BlurSize;
o.uv[] = uv - float2( _MainTex_TexelSize.x*1.0,0.0)*_BlurSize;
o.uv[] = uv + float2( _MainTex_TexelSize.x*2.0,0.0)*_BlurSize;
o.uv[] = uv - float2( _MainTex_TexelSize.x*2.0,0.0)*_BlurSize; UNITY_TRANSFER_FOG(o, o.vertex);
return o;
} //在片元着色器中进行最终的模糊计算,此过程在每个Pass中都会进行一次计算,但计算方式是统一的
fixed4 frag(v2f i) : SV_Target
{
float weights[] = {0.4026,0.2442,0.0545}; fixed4 col = tex2D(_MainTex, i.uv[]); fixed3 sum = col.rgb*weights[]; //对采样结果进行对应纹理偏移坐标的权重计算,以得到模糊的效果
for (int it = ; it < ; it++)
{
sum += tex2D(_MainTex, i.uv[ * it - ]).rgb*weights[it];//对应1和3,也就是原始像素的上方两像素
sum += tex2D(_MainTex, i.uv[ * it]).rgb*weights[it];//对应2和4,下方两像素
}
fixed4 color = fixed4(sum, 1.0);
UNITY_APPLY_FOG(i.fogCoord, color);
return color;
} ENDCG ZTest Always
Cull Off
ZWrite Off //纵向模糊Pass,直接用指令调用上面的函数
Pass
{
NAME "GAUSSIANBLUR_V"
CGPROGRAM
#pragma vertex vert_v
#pragma fragment frag ENDCG
} //横向模糊Pass
Pass
{
NAME "GAUSSIANBLUR_H"
CGPROGRAM
#pragma vertex vert_h
#pragma fragment frag ENDCG
}
}
Fallback Off
}

效果如下:

Unity Shader 屏幕后效果——高斯模糊的更多相关文章

  1. Unity Shader 屏幕后效果——颜色校正

    屏幕后效果指的是,当前整个场景图已经渲染完成输出到屏幕后,再对输出的屏幕图像进行的操作. 在Unity中,一般过程通常是: 1.建立用于处理效果的shader和临时材质,给shader脚本传递需要控制 ...

  2. Unity Shader 屏幕后效果——边缘检测

    关于屏幕后效果的控制类详细见之前写的另一篇博客: https://www.cnblogs.com/koshio0219/p/11131619.html 这篇主要是基于之前的控制类,实现另一种常见的屏幕 ...

  3. Unity Shader 屏幕后效果——全局雾

    Unity内置的雾效需要在每个shader中分别编写,造成了极大的不便.这里利用屏幕后处理产生可单独控制且自由度更高的雾效. 屏幕后雾效的本质在于,通过深度纹理重构出每个像素在世界空间中的位置,根据得 ...

  4. Unity Shader 屏幕后效果——景深

    景深效果的原理是,在摄像机的近裁剪平面和远裁剪平面之间可以设置一个焦距,在这个距离所在的平面上的物体最为清晰,而这个距离之前或之后的物体成像是一种模糊状态(根据距离逐渐模糊,最终达到最为模糊的状态). ...

  5. Unity Shader 屏幕后效果——Bloom外发光

    Bloom的原理很简单,主要是提取渲染图像中的亮部区域,并对亮部区域进行模糊处理,再与原始图像混合而成. 一般对亮部进行模糊处理的部分采用高斯模糊,关于高斯模糊,详见之前的另一篇博客: https:/ ...

  6. Unity Shader 屏幕后效果——摄像机运动模糊(速度映射图实现)

    速度映射图主要是为了得到每个像素相对于前一帧的运动矢量,其中一种方法是使用摄像机的深度纹理来推导. 推导过程如下: 先由深度纹理逆推出NDC(归一化的设备坐标)下的顶点坐标,利用VP矩阵(视角*投影矩 ...

  7. Unity Shader实现描边效果

    http://gad.qq.com/article/detail/28346 描边效果是游戏里面非常常用的一种效果,一般是为了凸显游戏中的某个对象,会给对象增加一个描边效果.本篇文章和大家介绍下利用S ...

  8. Unity Shader 之 透明效果

    透明效果 透明效果一般有两种实现方法: 第一种,使用透明度测试(Alpha Test) 第二种,使用透明度混合(Alpha Blending) 透明度测试和透明度混合机制: 透明度测试(Alpha T ...

  9. Unity实现屏幕抖动效果(通过Camera Viewpoint实现)

    由于游戏死亡时一般都需要屏幕抖一下下. 所以百度了下相关写法,发现方法很多~~~ 找来找去,找到个简单粗暴地,啥都不需要,一个脚本拖动到Camera上就可以了 略微修改了一点点,share一下 usi ...

随机推荐

  1. JQ动态生成节点绑定事件无效问题

    最近做项目的时候遇见了一个问题,通过jq将动态节点绑定到dom节点上,并且为动态节点绑定方法,此方法再次为动态节点添加动态节点,但在刷新之后,动态节点上的方法失效了,过程为:创建动态节点->动态 ...

  2. Python语言获取目录下所有文件

    #coding=utf-8# -*- coding: utf-8 -*-import osimport sysreload(sys) sys.setdefaultencoding('utf-8') d ...

  3. Java学习——内存机制

    Java学习——内存机制 摘要:本文主要介绍了Java的内存机制. 部分内容来自以下博客: https://www.cnblogs.com/xrq730/p/4827590.html https:// ...

  4. 算法笔记 第6章 C++标准模版库(STL)介绍 学习笔记

    6.1 vector的常见用法详解 vector:变长数组,长度根据需要而自动改变的数组 要使用vector,则需要添加vector头文件,即#include<vector>,还需要在头文 ...

  5. 【设计模式】Bridge

    前言 Bridge设计模式,将一个复杂类分成可以单独开发的部分.分成的两个部分,abstraction,implementation.字面上是抽象和实现,但不同于抽象方法及其实现.下面摘录Wiki的两 ...

  6. 开发技术--浅谈python数据类型

    开发|浅谈python数据类型 在回顾Python基础的时候,遇到最大的问题就是内容很多,而我的目的是回顾自己之前学习的内容,进行相应的总结,所以我就不玩基础了,很多在我实际生活中使用的东西,我会在文 ...

  7. webpack4 打包静态资源

    demo 代码点此,开始之前,先做点准备工作. 准备工作 准备一个空文件夹,然后执行下列命令: npm init -y npm i -D webpack webpack-cli 然后创建一个 dist ...

  8. js中对象字面量

    一.对象字面量语法 var person={ name:'小王', age:18, _pri:233 } 成员名称的单引号不是必须的 最后一个成员结尾不要用逗号,不然在某些浏览器中会抛出错误 成员名相 ...

  9. iOS深拷贝浅拷贝

    浅拷贝:浅拷贝并不拷贝对象本身,只是对指向对象的指针进行拷贝深拷贝:直接拷贝对象到内存中一块区域,然后把新对象的指针指向这块内存 在iOS中并不是所有对象都支持Copy和MutableCopy,遵循N ...

  10. poi操作Word创建超链接

    项目引入poi: <dependency> <groupId>org.apache.poi</groupId> <artifactId>poi</ ...