代码

import pandas as pd
import numpy as np s = pd.Series([1,3,6,np.nan, 44,1]) print('-1-')
print(s) dates = pd.date_range('20160101', periods=6)
print('-2-')
print(dates) # index 是行的key; 默认就是数字
df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=['a','b','c','d'])
print('-3-')
print(df) df1 = pd.DataFrame(np.arange(12).reshape((3,4)))
print('-4-')
print(df1) df2 = pd.DataFrame({'A':1.,
'B':pd.Timestamp('20130102'),
'C':pd.Series(1,index=list(range(4)), dtype = 'float32'),
'D':np.array([3]*4,dtype='int32'),
'E':pd.Categorical(["test","train","test","train"]),
'F':'foo'})
print('-5-')
print(df2)
print('-6-')
print(df2.dtypes)
print('-7-')
print(df2.index)
print('-8-')
print(df2.columns)
print('-9-')
print(df2.values) print('-10-')
#只会计算数字串
print(df2.describe()) print('-11-')
print(df2.T) print('-12-')
# 对 ABCD排序
print(df2.sort_index(axis=1, ascending=False)) print('-13-')
# 对123排序
print(df2.sort_index(axis=0, ascending=False)) print('-14-')
print(df2.sort_values(by='E'))

  

输出

-1-
0 1.0
1 3.0
2 6.0
3 NaN
4 44.0
5 1.0
dtype: float64
-2-
DatetimeIndex(['2016-01-01', '2016-01-02', '2016-01-03', '2016-01-04',
'2016-01-05', '2016-01-06'],
dtype='datetime64[ns]', freq='D')
-3-
a b c d
2016-01-01 -0.636080 -0.411646 1.167693 -0.085643
2016-01-02 -0.931738 -0.656105 0.833493 0.866367
2016-01-03 -0.495047 -0.131291 -0.757423 -0.783154
2016-01-04 -0.207423 0.261732 0.300315 -0.674217
2016-01-05 0.241664 0.560630 -0.057852 -0.411710
2016-01-06 -0.964392 0.990477 0.926594 0.388210
-4-
0 1 2 3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
-5-
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
-6-
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object
-7-
Int64Index([0, 1, 2, 3], dtype='int64')
-8-
Index(['A', 'B', 'C', 'D', 'E', 'F'], dtype='object')
-9-
[[1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'test' 'foo']
[1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'train' 'foo']
[1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'test' 'foo']
[1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'train' 'foo']]
-10-
A C D
count 4.0 4.0 4.0
mean 1.0 1.0 3.0
std 0.0 0.0 0.0
min 1.0 1.0 3.0
25% 1.0 1.0 3.0
50% 1.0 1.0 3.0
75% 1.0 1.0 3.0
max 1.0 1.0 3.0
-11-
0 ... 3
A 1 ... 1
B 2013-01-02 00:00:00 ... 2013-01-02 00:00:00
C 1 ... 1
D 3 ... 3
E test ... train
F foo ... foo [6 rows x 4 columns]
-12-
F E D C B A
0 foo test 3 1.0 2013-01-02 1.0
1 foo train 3 1.0 2013-01-02 1.0
2 foo test 3 1.0 2013-01-02 1.0
3 foo train 3 1.0 2013-01-02 1.0
-13-
A B C D E F
3 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
0 1.0 2013-01-02 1.0 3 test foo
-14-
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
2 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
3 1.0 2013-01-02 1.0 3 train foo

  

13-numpy笔记-莫烦pandas-1的更多相关文章

  1. 16-numpy笔记-莫烦pandas-4

    代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...

  2. 15-numpy笔记-莫烦pandas-3

    代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...

  3. 14-numpy笔记-莫烦pandas-2

    代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...

  4. 18-numpy笔记-莫烦pandas-6-plot显示

    代码 import pandas as pd import numpy as np import matplotlib.pyplot as plt data = pd.Series(np.random ...

  5. 17-numpy笔记-莫烦pandas-5

    代码 import pandas as pd import numpy as np left=pd.DataFrame({'key':['K0','K1','K2','K3'], 'A':['A0', ...

  6. 12-numpy笔记-莫烦基本操作2

    代码 import numpy as np A = np.arange(3,15) print('-1-') print(A) print('-2-') print(A[3]) A = np.aran ...

  7. 11-numpy笔记-莫烦基础操作1

    代码 import numpy as np array = np.array([[1,2,5],[3,4,6]]) print('-1-') print('数组维度', array.ndim) pri ...

  8. tensorflow学习笔记-bili莫烦

    bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...

  9. scikit-learn学习笔记-bili莫烦

    bilibili莫烦scikit-learn视频学习笔记 1.使用KNN对iris数据分类 from sklearn import datasets from sklearn.model_select ...

随机推荐

  1. 历届试题 青蛙跳杯子-(bfs)

    题目:http://lx.lanqiao.cn/problem.page?gpid=T448 题意:有两个字符串例如*WWBB和WWBB*,*每次能往左或右跳1-3步,与原位置的字符交换,问最少步数跳 ...

  2. 零基础入门 实战mpvue2.0多端小程序框架

    第1章 课程快速预览(必看!!!)在这一章节中,老师讲带领你快速预览课程整体.其中,涉及到为什么要做这么一门实战课程.制作一个小程序的完整流程是怎么样的,以及如何做项目的技术选型. 第2章 30 分钟 ...

  3. SpringCloud微服务常见组件理解

    概述 毫无疑问,Spring Cloud是目前微服务架构领域的翘楚,无数的书籍博客都在讲解这个技术.不过大多数讲解还停留在对Spring Cloud功能使用的层面,其底层的很多原理,很多人可能并不知晓 ...

  4. 重构 改善既有代码的设计 (Martin Fowler 著)

    第1章 重构, 第一个案例 1.1 起点 1.2 重构的第一步 1.3 分解并重组 statement() 1.4 运用多态取代与价格相关的条件逻辑 1.5 结语 第2章 重构原则 2.1 何谓重构 ...

  5. MySchool题目

    题目: 1.查询所有学生记录,包含年级名称2.查询S1年级下的学生记录 一.项目目录 二.com.myschool.dao 2.1 BaseDao package com.myschool.dao; ...

  6. MSM8909中LK阶段LCM屏适配与显示流程分析(一)

    1.前言 在驱动开发中,我们往往需要适配一些新的屏幕或者调试一些屏幕的参数等,对于Qualcomm的MSM8909这款SoC,当启动Android系统时,会有一个LK阶段,该阶段用来启动Linux内核 ...

  7. python I/O复用

    select是阻塞式的方法

  8. [Node.js] TypeScript 实现 sleep 函数

    看过不少网友的文章, 有各种方法, 但我想要的是一个能线性执行的sleep函数. /** * 等待指定的时间 * @param ms */ static async sleep(ms: number) ...

  9. duba网址对firefox快捷方式的劫持

    直接删除 “驱动精灵” 即可. 等我 二进制安全 学好了,一定开发一种病毒专干这种劫持的,煞笔软件.

  10. Lucene的全文检索学习

    Lucene的官方网站(Apache的顶级项目):http://lucene.apache.org/ 1.什么是Lucene? Lucene 是 apache 软件基金会的一个子项目,由 Doug C ...