#2590. 「NOIP2009」最优贸易
C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市。任意两个城市之间最多只有一条道路直接相连。这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为 1 条。
C 国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。
商人阿龙来到 C 国旅游。当他得知同一种商品在不同城市的价格可能会不同这一信息之后,便决定在旅游的同时,利用商品在不同城市中的差价赚回一点旅费。设 C 国 nnn 个城市的标号从 1∼n,阿龙决定从 1 号城市出发,并最终在 n 号城市结束自己的旅行。在旅游的过程中,任何城市可以重复经过多次,但不要求经过所有 n 个城市。
阿龙通过这样的贸易方式赚取旅费:他会选择一个经过的城市买入他最喜欢的商品——水晶球,并在之后经过的另一个城市卖出这个水晶球,用赚取的差价当做旅费。由于阿龙主要是来 C 国旅游,他决定这个贸易只进行最多一次,当然,在赚不到差价的情况下他就无需进行贸易。
假设 C 国有 5 个大城市,城市的编号和道路连接情况如下图,单向箭头表示这条道路为单向通行,双向箭头表示这条道路为双向通行。
现在给出 n个城市的水晶球价格, m 条道路的信息(每条道路所连接的两个城市的编号以及该条道路的通行情况)。请你告诉阿龙,他最多能赚取多少旅费。
分析:
说说我本来的思路,我想用spfa法遍历,一边遍历一边找出到第i个顶点时的最大值和最小值,并保存下来,至于双向边还是单向边,我用一个计数器来记录当前是第几次到达i点,如果是0,就可以扩展它,如果大于0,就不能(显然这一个方法不对......)
最后就用maxs[i]-mins[i]找到ans;提交,10分。
后来学到了另一种思路:跑两遍spfa。
正向跑一遍记录min[i],反向再跑一遍记录max[i],这样不仅能保证连通性(即当前点一定能到终点),也能比较得ans;
#include<bits/stdc++.h>
#define inf 1e9;
using namespace std;
int n,m,a[],ans=,minn[],maxx[]={};
struct node{
int to,next,wei;
}e[];
void read(int &x)
{
x=;int f=;char s=getchar();
while(s>''||s<''){if(s=='-')f=-;s=getchar();}
while(s<=''&&s>=''){x=x*+s-'';s=getchar();}
x*=f;
}
void print(int x)
{
if(x<){putchar('-');x=-x;}
if(x>){print(x/);}
putchar(x%+'');
}
int head[][],tot=,vis[];
void add(int x,int y){
tot++;
e[tot].to=y;
e[tot].next=head[x][];
head[x][]=tot;
tot++;
e[tot].to=x;
e[tot].next=head[y][];
head[y][]=tot;
}
queue<int> q;
void spfa(int start)
{
memset(vis,,sizeof vis);
memset(minn,0x3f3f3f3f,sizeof minn);
vis[start]=;
q.push(start);
minn[start]=a[start];
while(!q.empty())
{
int u=q.front();q.pop();
vis[u]=;
for(int p=head[u][];p!=-;p=e[p].next)
{
int v=e[p].to;
if(minn[v]>min(a[v],minn[u]))
{
minn[v]=min(a[v],minn[u]);
if(!vis[v])
{
q.push(v),vis[v]=;
}
} }
}
}
void spfa2(int start)
{
memset(vis,,sizeof vis);
vis[start]=;
q.push(start);
maxx[start]=a[start];
ans=max(ans,maxx[n]-minn[n]);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=;
for(int p=head[u][];p!=-;p=e[p].next)
{
int v=e[p].to;
if(maxx[v]<max(maxx[u],a[v]))
{
maxx[v]=max(a[v],maxx[u]);
ans=max(maxx[v]-minn[v],ans);
if(!vis[v]){
q.push(v),vis[v]=;
}
} }
}
}
int main()
{
read(n),read(m);
memset(head,-,sizeof head);
for(int i=;i<=n;i++)
{
read(a[i]);
}
for(int i=;i<=m;i++){
int x,y,z;
read(x),read(y),read(z);
add(x,y);
if(z==) add(y,x);
}
spfa();
spfa2(n);
print(ans);
return ;
}
#2590. 「NOIP2009」最优贸易的更多相关文章
- 「NOIP2009」最优贸易 题解
「NOIP2009」最优贸易 题解 题目TP门 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 ...
- 「NOIP2009」最优贸易
「NOIP2009」最优贸易 「NOIP2009」最优贸易内存限制:128 MiB时间限制:1000 ms 题目描述C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意 ...
- 「CH6101」最优贸易
「CH6101」最优贸易 传送门 考虑一种贪心的思想:我们要尽量买价格小的货物,并尽量高价转卖. 我们记 : \(mn[i]\) 为从点 \(1\) 走到点 \(i\) 经过的价格最小的货物的价格. ...
- 「NOIP2009」Hankson 的趣味题
Hankson 的趣味题 [内存限制:$128 MiB$][时间限制:$1000 ms$] [标准输入输出][题目类型:传统][评测方式:文本比较] 题目描述 Hanks 博士是 BT(Bio-Tec ...
- 【NOIP2009】最优贸易
描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通 ...
- NOIP2009 压轴---最优贸易
链接:https://ac.nowcoder.com/acm/contest/959/H来源:牛客网 C国有n个大城市和m条道路,每条道路连接这n个城市中的某两个城市.任意两个城市之间最多只有一条道路 ...
- [NOIP2009][LuoguP1073] 最优贸易 - Tarjan,拓扑+DP
Description&Data 题面:https://www.luogu.org/problemnew/show/P1073 Solution Tarjan对联通块缩点,在DAG上按照拓扑序 ...
- NOIP2009 t3 最优贸易
题目传送门:洛谷P1073 dalao们都用的tarjan啊拓扑排序啊之类的玩意儿,我这个蒟蒻不会,只想到了极其暴力的分层图最短路 设三个状态 0表示没有发生任何买卖的情况 1表示买了没有卖的情况 2 ...
- loj2589 「NOIP2009」Hankson 的趣味题
对于质因数分解理解还不到位. 此题可知$lcm$是$x$的倍数,$x$是$lcm$的约数,只要在$lcm$的分解质因数里对每一个质因子讨论种数即可. 具体来说,对于$lcm$的一个质因子$p$,讨论$ ...
随机推荐
- 进入docker 内部
$ sudo docker ps $ sudo docker exec -it 775c7c9ee1e1 /bin/bash
- SpringBoot系列教程web篇之Thymeleaf环境搭建
上一篇博文介绍了如何使用Freemaker引擎搭建web项目,这一篇我们则看一下另外一个常见的页面渲染引擎Thymeleaf如何搭建一个web项目 推荐结合Freemaker博文一起查看,效果更佳 1 ...
- java enum类探索
参考网址1, 参考网址2 一直对枚举有点迷惑,现在试着理解枚举. 1.首先,普通类与枚举 的区别.拿两个例子比较吧 普通类: /** * 一个普通类 * @author Administrator * ...
- tetetet
http://www.wuwenhui.cn/2623.html http://www.360doc.com/content/16/1104/09/36005694_603810507.shtml
- python基础 — Selenium 详细介绍
一.Selenium+Python环境搭建及配置 1.1 selenium 介绍 selenium 是一个 web 的自动化测试工具,不少学习功能自动化的同学开始首选 selenium ,因为它相比 ...
- python实战项目 — 爬取 妹子图网,保存图片到本地
重点: 1. 用def函数 2. 使用 os.path.dirname("路径保存") , 实现每组图片保存在独立的文件夹中 方法1: import requests from l ...
- AVR单片机教程——按键动作
上一篇教程中我们学习了如何读取按键状态.而按键的动作,比如单击,至少需要两个状态才能判定,长按.双击的判定更加复杂.今天我们来学习如何使用库函数判断按键单击,以及其实现原理. 我们要实现的是:当一个按 ...
- gorm 批量插入数据
使用gorm 插入数据的时候,根据官方文档可以使用Create或者FirstOrCreate(). 但是官方没有提供批量插入数据的方法. 根据github的 issue得知,我们可以通过自己拼接sql ...
- 2.9_Database Interface ADO结构组成及连接方式实例
说通俗点OLE DB和ODBC都是最底层的东西,而ADO对象给我们提供了一个“可视化”和应用层直接交互的组件,ADO对象T通过OLE DB间接取得数据库中的数据,如下图: 从上面看出,可以说ADO是应 ...
- Python之TensorFlow的变量收集、自定义命令参数、矩阵运算、梯度下降-4
一.TensorFlow为什么要存在变量收集的过程,主要目的就是把训练过程中的数据,比如loss.权重.偏置等数据通过图形展示的方式呈现在开发者的眼前. 自定义参数:自定义参数,主要是通过Python ...