前言

v8 是 Chrome 的 JavaScript 引擎,其中关于数组的排序完全采用了 JavaScript 实现。

排序采用的算法跟数组的长度有关,当数组长度小于等于 10 时,采用插入排序,大于 10 的时候,采用快速排序。(当然了,这种说法并不严谨)。

我们先来看看插入排序和快速排序。

插入排序

原理

将第一个元素视为有序序列,遍历数组,将之后的元素依次插入这个构建的有序序列中。

图示

实现

function insertionSort(arr) {
for (var i = 1; i < arr.length; i++) {
var element = arr[i];
for (var j = i - 1; j >= 0; j--) {
var tmp = arr[j];
var order = tmp - element;
if (order > 0) {
arr[j + 1] = tmp;
} else {
break;
}
}
arr[j + 1] = element;
}
return arr;
} var arr = [6, 5, 4, 3, 2, 1];
console.log(insertionSort(arr));

时间复杂度

时间复杂度是指执行算法所需要的计算工作量,它考察当输入值大小趋近无穷时的情况,一般情况下,算法中基本操作重复执行的次数是问题规模 n 的某个函数。

最好情况:数组升序排列,时间复杂度为:O(n)

最坏情况:数组降序排列,时间复杂度为:O(n²)

稳定性

稳定性,是指相同的元素在排序后是否还保持相对的位置。

要注意的是对于不稳定的排序算法,只要举出一个实例,即可说明它的不稳定性;而对于稳定的排序算法,必须对算法进行分析从而得到稳定的特性。

比如 [3, 3, 1],排序后,还是 [3, 3, 1],但是其实是第二个 3 在 第一个 3 前,那这就是不稳定的排序算法。

插入排序是稳定的算法。

优势

当数组是快要排序好的状态或者问题规模比较小的时候,插入排序效率更高。这也是为什么 v8 会在数组长度小于等于 10 的时候采用插入排序。

快速排序

原理

  1. 选择一个元素作为"基准"
  2. 小于"基准"的元素,都移到"基准"的左边;大于"基准"的元素,都移到"基准"的右边。
  3. 对"基准"左边和右边的两个子集,不断重复第一步和第二步,直到所有子集只剩下一个元素为止。

示例

示例和下面的实现方式来源于阮一峰老师的《快速排序(Quicksort)的Javascript实现》

以数组 [85, 24, 63, 45, 17, 31, 96, 50] 为例:

第一步,选择中间的元素 45 作为"基准"。(基准值可以任意选择,但是选择中间的值比较容易理解。)

第二步,按照顺序,将每个元素与"基准"进行比较,形成两个子集,一个"小于45",另一个"大于等于45"。

第三步,对两个子集不断重复第一步和第二步,直到所有子集只剩下一个元素为止。

实现

var quickSort = function(arr) {
  if (arr.length <= 1) { return arr; }
// 取数组的中间元素作为基准
  var pivotIndex = Math.floor(arr.length / 2);
  var pivot = arr.splice(pivotIndex, 1)[0];   var left = [];
  var right = [];   for (var i = 0; i < arr.length; i++){
    if (arr[i] < pivot) {
      left.push(arr[i]);
    } else {
      right.push(arr[i]);
    }
  }
  return quickSort(left).concat([pivot], quickSort(right));
};

然而这种实现方式需要额外的空间用来储存左右子集,所以还有一种原地(in-place)排序的实现方式。

图示

我们来看看原地排序的实现图示:

为了让大家看明白快速排序的原理,我调慢了执行速度。

在这张示意图里,基准的取值规则是取最左边的元素,黄色代表当前的基准,绿色代表小于基准的元素,紫色代表大于基准的元素。

我们会发现,绿色的元素会紧挨在基准的右边,紫色的元素会被移到后面,然后交换基准和绿色的最后一个元素,此时,基准处于正确的位置,即前面的元素都小于基准值,后面的元素都大于基准值。然后再对前面的和后面的多个元素取基准,做排序。

in-place 实现

function quickSort(arr) {
// 交换元素
function swap(arr, a, b) {
var temp = arr[a];
arr[a] = arr[b];
arr[b] = temp;
} function partition(arr, left, right) {
var pivot = arr[left];
var storeIndex = left; for (var i = left + 1; i <= right; i++) {
if (arr[i] < pivot) {
swap(arr, ++storeIndex, i);
}
} swap(arr, left, storeIndex); return storeIndex;
} function sort(arr, left, right) {
if (left < right) {
var storeIndex = partition(arr, left, right);
sort(arr, left, storeIndex - 1);
sort(arr, storeIndex + 1, right);
}
} sort(arr, 0, arr.length - 1); return arr;
} console.log(quickSort(6, 7, 3, 4, 1, 5, 9, 2, 8))

稳定性

快速排序是不稳定的排序。如果要证明一个排序是不稳定的,你只用举出一个实例就行。

所以我们举一个呗~

就以数组 [1, 2, 3, 3, 4, 5] 为例,因为基准的选择不确定,假如选定了第三个元素(也就是第一个 3) 为基准,所有小于 3 的元素在前面,大于等于 3 的在后面,排序的结果没有问题。可是如果选择了第四个元素(也就是第二个 3 ),小于 3 的在基准前面,大于等于 3 的在基准后面,第一个 3 就会被移动到 第二个 3 后面,所以快速排序是不稳定的排序。

时间复杂度

阮一峰老师的实现中,基准取的是中间元素,而原地排序中基准取最左边的元素。快速排序的关键点就在于基准的选择,选取不同的基准时,会有不同性能表现。

快速排序的时间复杂度最好为 O(nlogn),可是为什么是 nlogn 呢?来一个并不严谨的证明:

在最佳情况下,每一次都平分整个数组。假设数组有 n 个元素,其递归的深度就为 log2n + 1,时间复杂度为 O(n)[(log2n + 1)],因为时间复杂度考察当输入值大小趋近无穷时的情况,所以会忽略低阶项,时间复杂度为:o(nlog2n)。

如果一个程序的运行时间是对数级的,则随着 n 的增大程序会渐渐慢下来。如果底数是 10,lg1000 等于 3,如果 n 为 1000000,lgn 等于 6,仅为之前的两倍。如果底数为 2,log21000 的值约为 10,log21000000 的值约为 19,约为之前的两倍。我们可以发现任意底数的一个对数函数其实都相差一个常数倍而已。所以我们认为 O(logn)已经可以表达所有底数的对数了,所以时间复杂度最后为: O(nlogn)。

而在最差情况下,如果对一个已经排序好的数组,每次选择基准元素时总是选择第一个元素或者最后一个元素,那么每次都会有一个子集是空的,递归的层数将达到 n,最后导致算法的时间复杂度退化为 O(n²)。

这也充分说明了一个基准的选择是多么的重要,而 v8 为了提高性能,就对基准的选择做了很多优化。

v8 基准选择

v8 选择基准的原理是从头和尾之外再选择一个元素,然后三个值排序取中间值。

当数组长度大于 10 但是小于 1000 的时候,取中间位置的元素,实现代码为:

// 基准的下标
// >> 1 相当于除以 2 (忽略余数)
third_index = from + ((to - from) >> 1);

当数组长度大于 1000 的时候,每隔 200 ~ 215 个元素取一个值,然后将这些值进行排序,取中间值的下标,实现的代码为:

// 简单处理过
function GetThirdIndex(a, from, to) {
var t_array = new Array(); // & 位运算符
var increment = 200 + ((to - from) & 15); var j = 0;
from += 1;
to -= 1; for (var i = from; i < to; i += increment) {
t_array[j] = [i, a[i]];
j++;
}
// 对随机挑选的这些值进行排序
t_array.sort(function(a, b) {
return comparefn(a[1], b[1]);
});
// 取中间值的下标
var third_index = t_array[t_array.length >> 1][0];
return third_index;
}

也许你会好奇 200 + ((to - from) & 15) 是什么意思?

& 表示是按位与,对整数操作数逐位执行布尔与操作。只有两个操作数中相对应的位都是 1,结果中的这一位才是 1。

以 15 & 127 为例:

15 二进制为: (0000 1111)

127 二进制为:(1111 1111)

按位与结果为:(0000 1111)= 15

所以 15 & 127 的结果为 15

注意 15 的二进制为: 1111,这就意味着任何和 15 按位与的结果都会小于或者等于 15,这才实现了每隔 200 ~ 215 个元素取一个值。

v8 源码

终于到了看源码的时刻!源码地址为:https://github.com/v8/v8/blob/master/src/js/array.js#L758

function InsertionSort(a, from, to) {
for (var i = from + 1; i < to; i++) {
var element = a[i];
for (var j = i - 1; j >= from; j--) {
var tmp = a[j];
var order = comparefn(tmp, element);
if (order > 0) {
a[j + 1] = tmp;
} else {
break;
}
}
a[j + 1] = element;
}
}; function QuickSort(a, from, to) { var third_index = 0;
while (true) {
// Insertion sort is faster for short arrays.
if (to - from <= 10) {
InsertionSort(a, from, to);
return;
}
if (to - from > 1000) {
third_index = GetThirdIndex(a, from, to);
} else {
third_index = from + ((to - from) >> 1);
}
// Find a pivot as the median of first, last and middle element.
var v0 = a[from];
var v1 = a[to - 1];
var v2 = a[third_index]; var c01 = comparefn(v0, v1);
if (c01 > 0) {
// v1 < v0, so swap them.
var tmp = v0;
v0 = v1;
v1 = tmp;
} // v0 <= v1.
var c02 = comparefn(v0, v2);
if (c02 >= 0) {
// v2 <= v0 <= v1.
var tmp = v0;
v0 = v2;
v2 = v1;
v1 = tmp;
} else {
// v0 <= v1 && v0 < v2
var c12 = comparefn(v1, v2);
if (c12 > 0) {
// v0 <= v2 < v1
var tmp = v1;
v1 = v2;
v2 = tmp;
}
} // v0 <= v1 <= v2
a[from] = v0;
a[to - 1] = v2; var pivot = v1; var low_end = from + 1; // Upper bound of elements lower than pivot.
var high_start = to - 1; // Lower bound of elements greater than pivot. a[third_index] = a[low_end];
a[low_end] = pivot; // From low_end to i are elements equal to pivot.
// From i to high_start are elements that haven't been compared yet. partition: for (var i = low_end + 1; i < high_start; i++) {
var element = a[i];
var order = comparefn(element, pivot);
if (order < 0) {
a[i] = a[low_end];
a[low_end] = element;
low_end++;
} else if (order > 0) {
do {
high_start--;
if (high_start == i) break partition;
var top_elem = a[high_start];
order = comparefn(top_elem, pivot);
} while (order > 0); a[i] = a[high_start];
a[high_start] = element;
if (order < 0) {
element = a[i];
a[i] = a[low_end];
a[low_end] = element;
low_end++;
}
}
} if (to - high_start < low_end - from) {
QuickSort(a, high_start, to);
to = low_end;
} else {
QuickSort(a, from, low_end);
from = high_start;
}
}
} var arr = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]; function comparefn(a, b) {
return a - b
} QuickSort(arr, 0, arr.length)
console.log(arr)

我们以数组 [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] 为例,分析执行的过程。

1.执行 QuickSort 函数 参数 from 值为 0,参数 to 的值 11。

2.10 < to - from < 1000 第三个基准元素的下标为 (0 + 11 >> 1) = 5,基准值 a[5] 为 5。

3.比较 a[0] a[10] a[5] 的值,然后根据比较结果修改数组,数组此时为 [0, 9, 8, 7, 6, 5, 4, 3, 2, 1, 10]

4.将基准值和数组的第(from + 1)个即数组的第二个元素互换,此时数组为 [0, 5, 8, 7, 6, 9, 4, 3, 2, 1, 10],此时在基准值 5 前面的元素肯定是小于 5 的,因为第三步已经做了一次比较。后面的元素是未排序的。

我们接下来要做的就是把后面的元素中小于 5 的全部移到 5 的前面。

5.然后我们进入 partition 循环,我们依然以这个数组为例,单独抽出来写个 demo 讲一讲

// 假设代码执行到这里,为了方便演示,我们直接设置 low_end 等变量的值
// 可以直接复制到浏览器中查看数组变换效果
var a = [0, 5, 8, 7, 6, 9, 4, 3, 2, 1, 10]
var low_end = 1;
var high_start = 10;
var pivot = 5; console.log('起始数组为', a) partition: for (var i = low_end + 1; i < high_start; i++) { var element = a[i];
console.log('循环当前的元素为:', a[i])
var order = element - pivot; if (order < 0) {
a[i] = a[low_end];
a[low_end] = element;
low_end++;
console.log(a)
}
else if (order > 0) {
do {
high_start--;
if (high_start == i) break partition;
var top_elem = a[high_start];
order = top_elem - pivot;
} while (order > 0); a[i] = a[high_start];
a[high_start] = element; console.log(a) if (order < 0) {
element = a[i];
a[i] = a[low_end];
a[low_end] = element;
low_end++;
}
console.log(a)
}
} console.log('最后的结果为', a)
console.log(low_end)
console.log(high_start)

6.此时数组为 [0, 5, 8, 7, 6, 9, 4, 3, 2, 1, 10],循环从第三个元素开始,a[i] 的值为 8,因为大于基准值 5,即 order > 0,开始执行 do while 循环,do while 循环的目的在于倒序查找元素,找到第一个小于基准值的元素,然后让这个元素跟 a[i] 的位置交换。
第一个小于基准值的元素为 1,然后 1 与 8 交换,数组变成 [0, 5, 1, 7, 6, 9, 4, 3, 2, 8, 10]。high_start 的值是为了记录倒序查找到哪里了。

7.此时 a[i] 的值变成了 1,然后让 1 跟 基准值 5 交换,数组变成了 [0, 1, 5, 7, 6, 9, 4, 3, 2, 8, 10],low_end 的值加 1,low_end 的值是为了记录基准值的所在位置。

8.循环接着执行,遍历第四个元素 7,跟第 6、7 的步骤一致,数组先变成 [0, 1, 5, 2, 6, 9, 4, 3, 7, 8, 10],再变成 [0, 1, 2, 5, 6, 9, 4, 3, 7, 8, 10]

9.遍历第五个元素 6,跟第 6、7 的步骤一致,数组先变成 [0, 1, 2, 5, 3, 9, 4, 6, 7, 8, 10],再变成 [0, 1, 2, 3, 5, 9, 4, 6, 7, 8, 10]

10.遍历第六个元素 9,跟第 6、7 的步骤一致,数组先变成 [0, 1, 2, 3, 5, 4, 9, 6, 7, 8, 10],再变成 [0, 1, 2, 3, 4, 5, 9, 6, 7, 8, 10]

11.在下一次遍历中,因为 i == high_start,意味着正序和倒序的查找终于找到一起了,后面的元素肯定都是大于基准值的,此时退出循环

12.遍历后的结果为 [0, 1, 2, 3, 4, 5, 9, 6, 7, 8, 10],在基准值 5 前面的元素都小于 5,后面的元素都大于 5,然后我们分别对两个子集进行 QuickSort

13.此时 low_end 值为 5,high_start 值为 6,to 的值依然是 10,from 的值依然是 0,to - high_start < low_end - from 的结果为 true,我们对 QuickSort(a, 6, 10),即对后面的元素进行排序,但是注意,在新的 QuickSort 中,因为 to - from 的值小于 10,所以这一次其实是采用了插入排序。所以准确的说,当数组长度大于 10 的时候,v8 采用了快速排序和插入排序的混合排序方法。

14.然后 to = low_end 即设置 to 为 5,因为 while(true) 的原因,会再执行一遍,to - from 的值为 5,执行 InsertionSort(a, 0, 5),即对基准值前面的元素执行一次插入排序。

15.因为在 to - from <= 10 的判断中,有 return 语句,所以 while 循环结束。

16.v8 在对数组进行了一次快速排序后,然后对两个子集分别进行了插入排序,最终修改数组为正确排序后的数组。

比较

最后来张示意图感受下插入排序和快速排序:

图片来自于 https://www.toptal.com/developers/sorting-algorithms

解读 v8 排序源码的更多相关文章

  1. 通过解读 WPF 触摸源码,分析 WPF 插拔设备触摸失效的问题(问题篇)

    在 .NET Framework 4.7 以前,WPF 程序的触摸处理是基于操作系统组件但又自成一套的,这其实也为其各种各样的触摸失效问题埋下了伏笔.再加上它出现得比较早,触摸失效问题也变得更加难以解 ...

  2. DRF(1) - REST、DRF(View源码解读、APIView源码解读)

    一.REST 1.什么是编程? 数据结构和算法的结合. 2.什么是REST? 首先回顾我们曾经做过的图书管理系统,我们是这样设计url的,如下: /books/ /get_all_books/ 访问所 ...

  3. REST、DRF(View源码解读、APIView源码解读)

    一 . REST            前言 1 . 编程 : 数据结构和算法的结合 .小程序如简单的计算器,我们输入初始数据,经过计算,得到最终的数据,这个过程中,初始数据和结果数据都是数据,而计算 ...

  4. Restful 1 -- REST、DRF(View源码解读、APIView源码解读)及框架实现

    一.REST 1.什么是编程? 数据结构和算法的结合 2.什么是REST? - url用来唯一定位资源,http请求方式来区分用户行为 首先回顾我们曾经做过的图书管理系统,我们是这样设计url的,如下 ...

  5. Chrome V8 引擎源码剖析

    Chrome V8 引擎源码剖析 V8 https://github.com/v8/v8 array & sort https://github.com/v8/v8/search?l=Java ...

  6. DataStructure 排序 源码实现

    本篇博客实现了 1.冒泡排序 2.冒泡排序的一种优化(当某次冒泡没有进行交换时,退出循环) 3.选择排序 4.归并排序 5.快速排序. 主要是源码的实现,并将自己在敲的过程中所遇到的一些问题记录下来. ...

  7. go语言 nsq源码解读三 nsqlookupd源码nsqlookupd.go

    从本节开始,将逐步阅读nsq各模块的代码. 读一份代码,我的思路一般是: 1.了解用法,知道了怎么使用,对理解代码有宏观上有很大帮助. 2.了解各大模块的功能特点,同时再想想,如果让自己来实现这些模块 ...

  8. html5 Sortable.js 拖拽排序源码分析

    最近公司项目经常用到一个拖拽 Sortable.js插件,所以有空的时候看了 Sortable.js 源码,总共1300多行这样,写的挺完美的.   本帖属于原创,转载请出名出处. 官网http:// ...

  9. 解读Vue.use()源码

    Vue.use() vue.use()的作用: 官方文档的解释: 安装 Vue.js 插件.如果插件是一个对象,必须提供 install 方法.如果插件是一个函数,它会被作为 install 方法.i ...

随机推荐

  1. TP3.2 日期默认格式

    <input type="text" id="create_time" name="create_time" required=&qu ...

  2. Spirng学习指南-第一章(完)

    Spring学习指南 内容提要 ​ Spring框架是以简化J2EE应用程序开发为特定目标而创建的,是当前最流行的Java开发框架. ​ 本书从介绍Spring框架入手,针对Spring4.3和Jav ...

  3. docker-compose up 启动容器服务超时错误:ERROR: An HTTP request took too long to complete. Retry with --verbose to obtain debug information.

    问题: 本人正在使用docker运行一个中型的项目,包含40多个微服务及相关的docker.由于docker-compose up 同时启动的服务过多,超过了请求HTTP限制的60s时间仍未全部成功启 ...

  4. linux tomcat开机自启/nginx开机自启

    修改/etc/rc.d/rc.local文件,修改完成后需执行以下指令才能正常自启动 chmod +x /etc/rc.d/rc.local #!/bin/bash # THIS FILE IS AD ...

  5. js获取对象的属性个数

    for (var i = 0; i < dt.length; i++) { if (Object.keys(dt[i]).length <= 1) { dt.splice(i, 1); i ...

  6. WebServices 使用Session

    using System;using System.Collections.Generic;using System.Data;using System.Linq;using System.Web;u ...

  7. mybatis中参数为list集合时使用 mybatis in查询

    mybatis中参数为list集合时使用 mybatis in查询 一.问题描述mybatis sql查询时,若遇到多个条件匹配一个字段,sql 如: select * from user where ...

  8. 自学Python编程的第六天(最后代码有更好的请告诉我)----------来自苦逼的转行人

    2019-09-16-23:09:06 自学Python的第六天,也是写博客的第六天 今天学的内容是有关dict字典的用法 看视频加上练习,目前还没遇到有难点,但是感觉很不好的样子 没有难点以后突然出 ...

  9. 用StatSVN统计svn项目中每人代码提交量

    用StatSVN统计SVN服务器项目的代码量 下载并安装SVN统计工具StatSVN 1)下载地址:sourceforge.net/projects/statsvn/ 2)解压压缩包,到一个目录,如D ...

  10. Sqlmap注入工具

    Sqlmap注入工具 http://sqlmap.org/ Sqlmap是国外的一个免费的注入工具,基于python开发,支持现在几乎所有的数据库,支持get.post.cookie注入,可以添加co ...