nginx+lua访问流量实时上报kafka
在nginx这一层,接收到访问请求的时候,就把请求的流量上报发送给kafka
storm才能去消费kafka中的实时的访问日志,然后去进行缓存热数据的统计
从lua脚本直接创建一个kafka producer,发送数据到kafka
wget https://github.com/doujiang24/lua-resty-kafka/archive/master.zip yum install -y unzip unzip lua-resty-kafka-master.zip cp -rf /usr/local/lua-resty-kafka-master/lib/resty /usr/hello/lualib
nginx -s reload
lua脚本:
local cjson = require("cjson")
local producer = require("resty.kafka.producer") local broker_list = {
{ host = "192.168.31.187", port = 9092 },
{ host = "192.168.31.19", port = 9092 },
{ host = "192.168.31.227", port = 9092 }
} local log_json = {}
log_json["headers"] = ngx.req.get_headers()
log_json["uri_args"] = ngx.req.get_uri_args()
log_json["body"] = ngx.req.read_body()
log_json["http_version"] = ngx.req.http_version()
log_json["method"] =ngx.req.get_method()
log_json["raw_reader"] = ngx.req.raw_header()
log_json["body_data"] = ngx.req.get_body_data() local message = cjson.encode(log_json); local productId = ngx.req.get_uri_args()["productId"] local async_producer = producer:new(broker_list, { producer_type = "async" })
local ok, err = async_producer:send("access-log", productId, message) if not ok then
ngx.log(ngx.ERR, "kafka send err:", err)
return
end
两台机器上都这样做,才能统一上报流量到kafka
bin/kafka-topics.sh --zookeeper 192.168.31.187:2181,192.168.31.19:2181,192.168.31.227:2181 --topic access-log --replication-factor 1 --partitions 1 --create
bin/kafka-console-consumer.sh --zookeeper 192.168.31.187:2181,192.168.31.19:2181,192.168.31.227:2181 --topic access-log --from-beginning
(1)kafka在187上的节点死掉了,可能是虚拟机的问题,杀掉进程,重新启动一下
nohup bin/kafka-server-start.sh config/server.properties &
(2)需要在nginx.conf中,http部分,加入resolver 8.8.8.8;
(3)需要在kafka中加入advertised.host.name = 192.168.31.187,重启三个kafka进程
(4)需要启动eshop-cache缓存服务,因为nginx中的本地缓存可能不在了
基于storm+kafka完成商品访问次数实时统计拓扑的开发:
总结思路:
1、kafka consumer spout
单独的线程消费,写入队列
nextTuple,每次都是判断队列有没有数据,有的话再去获取并发射出去,不能阻塞
2、日志解析bolt
3、商品访问次数统计bolt
4、基于LRUMap完成统计
import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.StormSubmitter;
import org.apache.storm.topology.TopologyBuilder;
import org.apache.storm.tuple.Fields;
import org.apache.storm.utils.Utils; import com.roncoo.eshop.storm.bolt.LogParseBolt;
import com.roncoo.eshop.storm.bolt.ProductCountBolt;
import com.roncoo.eshop.storm.spout.AccessLogKafkaSpout; /**
* 热数据统计拓扑
* @author Administrator
*
*/
public class HotProductTopology { public static void main(String[] args) {
TopologyBuilder builder = new TopologyBuilder(); builder.setSpout("AccessLogKafkaSpout", new AccessLogKafkaSpout(), 1);
builder.setBolt("LogParseBolt", new LogParseBolt(), 5)
.setNumTasks(5)
.shuffleGrouping("AccessLogKafkaSpout");
builder.setBolt("ProductCountBolt", new ProductCountBolt(), 5)
.setNumTasks(10)
.fieldsGrouping("LogParseBolt", new Fields("productId")); Config config = new Config(); if(args != null && args.length > 1) {
config.setNumWorkers(3);
try {
StormSubmitter.submitTopology(args[0], config, builder.createTopology());
} catch (Exception e) {
e.printStackTrace();
}
} else {
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("HotProductTopology", config, builder.createTopology());
Utils.sleep(30000);
cluster.shutdown();
}
} }
import java.util.Map; import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Tuple;
import org.apache.storm.tuple.Values; import com.alibaba.fastjson.JSONObject; /**
* 日志解析的bolt
* @author Administrator
*
*/
public class LogParseBolt extends BaseRichBolt { private static final long serialVersionUID = -8017609899644290359L; private OutputCollector collector; @SuppressWarnings("rawtypes")
public void prepare(Map conf, TopologyContext context, OutputCollector collector) {
this.collector = collector;
} public void execute(Tuple tuple) {
String message = tuple.getStringByField("message");
JSONObject messageJSON = JSONObject.parseObject(message);
JSONObject uriArgsJSON = messageJSON.getJSONObject("uri_args");
Long productId = uriArgsJSON.getLong("productId"); if(productId != null) {
collector.emit(new Values(productId));
}
} public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("productId"));
} }
import java.util.ArrayList;
import java.util.List;
import java.util.Map; import org.apache.storm.shade.org.json.simple.JSONArray;
import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.trident.util.LRUMap;
import org.apache.storm.tuple.Tuple;
import org.apache.storm.utils.Utils; import com.roncoo.eshop.storm.zk.ZooKeeperSession; /**
* 商品访问次数统计bolt
* @author Administrator
*
*/
public class ProductCountBolt extends BaseRichBolt { private static final long serialVersionUID = -8761807561458126413L; private LRUMap<Long, Long> productCountMap = new LRUMap<Long, Long>(1000);
private ZooKeeperSession zkSession;
private int taskid; @SuppressWarnings("rawtypes")
public void prepare(Map conf, TopologyContext context, OutputCollector collector) {
this.zkSession = ZooKeeperSession.getInstance();
this.taskid = context.getThisTaskId(); new Thread(new ProductCountThread()).start(); // 1、将自己的taskid写入一个zookeeper node中,形成taskid的列表
// 2、然后每次都将自己的热门商品列表,写入自己的taskid对应的zookeeper节点
// 3、然后这样的话,并行的预热程序才能从第一步中知道,有哪些taskid
// 4、然后并行预热程序根据每个taskid去获取一个锁,然后再从对应的znode中拿到热门商品列表
initTaskId(context.getThisTaskId());
} private void initTaskId(int taskid) {
// ProductCountBolt所有的task启动的时候, 都会将自己的taskid写到同一个node的值中
// 格式就是逗号分隔,拼接成一个列表
// 111,211,355 zkSession.acquireDistributedLock(); String taskidList = zkSession.getNodeData();
if(!"".equals(taskidList)) {
taskidList += "," + taskid;
} else {
taskidList += taskid;
} zkSession.setNodeData("/taskid-list", taskidList); zkSession.releaseDistributedLock();
} private class ProductCountThread implements Runnable { public void run() {
List<Map.Entry<Long, Long>> topnProductList = new ArrayList<Map.Entry<Long, Long>>(); while(true) {
topnProductList.clear(); int topn = 3; if(productCountMap.size() == 0) {
Utils.sleep(100);
continue;
} for(Map.Entry<Long, Long> productCountEntry : productCountMap.entrySet()) {
if(topnProductList.size() == 0) {
topnProductList.add(productCountEntry);
} else {
// 比较大小,生成最热topn的算法有很多种
// 但是我这里为了简化起见,不想引入过多的数据结构和算法的的东西
// 很有可能还是会有漏洞,但是我已经反复推演了一下了,而且也画图分析过这个算法的运行流程了
boolean bigger = false; for(int i = 0; i < topnProductList.size(); i++){
Map.Entry<Long, Long> topnProductCountEntry = topnProductList.get(i); if(productCountEntry.getValue() > topnProductCountEntry.getValue()) {
int lastIndex = topnProductList.size() < topn ? topnProductList.size() - 1 : topn - 2;
for(int j = lastIndex; j >= i; j--) {
topnProductList.set(j + 1, topnProductList.get(j));
}
topnProductList.set(i, productCountEntry);
bigger = true;
break;
}
} if(!bigger) {
if(topnProductList.size() < topn) {
topnProductList.add(productCountEntry);
}
}
}
} // 获取到一个topn list
String topnProductListJSON = JSONArray.toJSONString(topnProductList);
zkSession.setNodeData("/task-hot-product-list-" + taskid, topnProductListJSON); Utils.sleep(5000);
}
} } public void execute(Tuple tuple) {
Long productId = tuple.getLongByField("productId"); Long count = productCountMap.get(productId);
if(count == null) {
count = 0L;
}
count++; productCountMap.put(productId, count);
} public void declareOutputFields(OutputFieldsDeclarer declarer) { } }
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.ArrayBlockingQueue; import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector; import org.apache.storm.spout.SpoutOutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichSpout;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Values;
import org.apache.storm.utils.Utils; /**
* kafka消费数据的spout
*/
public class AccessLogKafkaSpout extends BaseRichSpout { private static final long serialVersionUID = 8698470299234327074L; private ArrayBlockingQueue<String> queue = new ArrayBlockingQueue<String>(1000); private SpoutOutputCollector collector; @SuppressWarnings("rawtypes")
public void open(Map conf, TopologyContext context,
SpoutOutputCollector collector) {
this.collector = collector;
startKafkaConsumer();
} @SuppressWarnings("rawtypes")
private void startKafkaConsumer() {
Properties props = new Properties();
props.put("zookeeper.connect", "192.168.31.187:2181,192.168.31.19:2181,192.168.31.227:2181");
props.put("group.id", "eshop-cache-group");
props.put("zookeeper.session.timeout.ms", "40000");
props.put("zookeeper.sync.time.ms", "200");
props.put("auto.commit.interval.ms", "1000");
ConsumerConfig consumerConfig = new ConsumerConfig(props); ConsumerConnector consumerConnector = Consumer.
createJavaConsumerConnector(consumerConfig);
String topic = "access-log"; Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put(topic, 1); Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap =
consumerConnector.createMessageStreams(topicCountMap);
List<KafkaStream<byte[], byte[]>> streams = consumerMap.get(topic); for (KafkaStream stream : streams) {
new Thread(new KafkaMessageProcessor(stream)).start();
}
} private class KafkaMessageProcessor implements Runnable { @SuppressWarnings("rawtypes")
private KafkaStream kafkaStream; @SuppressWarnings("rawtypes")
public KafkaMessageProcessor(KafkaStream kafkaStream) {
this.kafkaStream = kafkaStream;
} @SuppressWarnings("unchecked")
public void run() {
ConsumerIterator<byte[], byte[]> it = kafkaStream.iterator();
while (it.hasNext()) {
String message = new String(it.next().message());
try {
queue.put(message);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
} } public void nextTuple() {
if(queue.size() > 0) {
try {
String message = queue.take();
collector.emit(new Values(message));
} catch (Exception e) {
e.printStackTrace();
}
} else {
Utils.sleep(100);
}
} public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("message"));
} }
import java.util.concurrent.CountDownLatch; import org.apache.zookeeper.CreateMode;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.Watcher.Event.KeeperState;
import org.apache.zookeeper.ZooDefs.Ids;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.data.Stat; /**
* ZooKeeperSession
* @author Administrator
*
*/
public class ZooKeeperSession { private static CountDownLatch connectedSemaphore = new CountDownLatch(1); private ZooKeeper zookeeper; public ZooKeeperSession() {
// 去连接zookeeper server,创建会话的时候,是异步去进行的
// 所以要给一个监听器,说告诉我们什么时候才是真正完成了跟zk server的连接
try {
this.zookeeper = new ZooKeeper(
"192.168.31.187:2181,192.168.31.19:2181,192.168.31.227:2181",
50000,
new ZooKeeperWatcher());
// 给一个状态CONNECTING,连接中
System.out.println(zookeeper.getState()); try {
// CountDownLatch
// java多线程并发同步的一个工具类
// 会传递进去一些数字,比如说1,2 ,3 都可以
// 然后await(),如果数字不是0,那么久卡住,等待 // 其他的线程可以调用coutnDown(),减1
// 如果数字减到0,那么之前所有在await的线程,都会逃出阻塞的状态
// 继续向下运行 connectedSemaphore.await();
} catch(InterruptedException e) {
e.printStackTrace();
} System.out.println("ZooKeeper session established......");
} catch (Exception e) {
e.printStackTrace();
}
} /**
* 获取分布式锁
* @param productId
*/
public void acquireDistributedLock() {
String path = "/taskid-list-lock"; try {
zookeeper.create(path, "".getBytes(),
Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
System.out.println("success to acquire lock for taskid-list-lock");
} catch (Exception e) {
// 如果那个商品对应的锁的node,已经存在了,就是已经被别人加锁了,那么就这里就会报错
// NodeExistsException
int count = 0;
while(true) {
try {
Thread.sleep(1000);
zookeeper.create(path, "".getBytes(),
Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
} catch (Exception e2) {
count++;
System.out.println("the " + count + " times try to acquire lock for taskid-list-lock......");
continue;
}
System.out.println("success to acquire lock for taskid-list-lock after " + count + " times try......");
break;
}
}
} /**
* 释放掉一个分布式锁
* @param productId
*/
public void releaseDistributedLock() {
String path = "/taskid-list-lock";
try {
zookeeper.delete(path, -1);
System.out.println("release the lock for taskid-list-lock......");
} catch (Exception e) {
e.printStackTrace();
}
} public String getNodeData() {
try {
return new String(zookeeper.getData("/taskid-list", false, new Stat()));
} catch (Exception e) {
e.printStackTrace();
}
return "";
} public void setNodeData(String path, String data) {
try {
zookeeper.setData(path, data.getBytes(), -1);
} catch (Exception e) {
e.printStackTrace();
}
} /**
* 建立zk session的watcher
* @author Administrator
*
*/
private class ZooKeeperWatcher implements Watcher { public void process(WatchedEvent event) {
System.out.println("Receive watched event: " + event.getState());
if(KeeperState.SyncConnected == event.getState()) {
connectedSemaphore.countDown();
}
} } /**
* 封装单例的静态内部类
* @author Administrator
*
*/
private static class Singleton { private static ZooKeeperSession instance; static {
instance = new ZooKeeperSession();
} public static ZooKeeperSession getInstance() {
return instance;
} } /**
* 获取单例
* @return
*/
public static ZooKeeperSession getInstance() {
return Singleton.getInstance();
} /**
* 初始化单例的便捷方法
*/
public static void init() {
getInstance();
} }
于双重zookeeper分布式锁完成分布式并行缓存预热:
1、服务启动的时候,进行缓存预热
2、从zk中读取taskid列表
3、依次遍历每个taskid,尝试获取分布式锁,如果获取不到,快速报错,不要等待,因为说明已经有其他服务实例在预热了
4、直接尝试获取下一个taskid的分布式锁
5、即使获取到了分布式锁,也要检查一下这个taskid的预热状态,如果已经被预热过了,就不再预热了
6、执行预热操作,遍历productid列表,查询数据,然后写ehcache和redis
7、预热完成后,设置taskid对应的预热状态
ZKsession重载两个方法:
/**
* 获取分布式锁
* @param productId
*/
public boolean acquireFastFailedDistributedLock(String path) {
try {
zookeeper.create(path, "".getBytes(),
Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
System.out.println("success to acquire lock for " + path);
return true;
} catch (Exception e) {
System.out.println("fail to acquire lock for " + path);
}
return false;
} /**
* 释放掉一个分布式锁
* @param productId
*/
public void releaseDistributedLock(String path) {
try {
zookeeper.delete(path, -1);
System.out.println("release the lock for " + path + "......");
} catch (Exception e) {
e.printStackTrace();
}
}
public String getNodeData(String path) {
try {
return new String(zookeeper.getData(path, false, new Stat()));
} catch (Exception e) {
e.printStackTrace();
}
return "";
} public void setNodeData(String path, String data) {
try {
zookeeper.setData(path, data.getBytes(), -1);
} catch (Exception e) {
e.printStackTrace();
}
}
/**
* 获取分布式锁
*/
public void acquireDistributedLock(String path) {
try {
zookeeper.create(path, "".getBytes(),
Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
System.out.println("success to acquire lock for " + path);
} catch (Exception e) {
// 如果那个商品对应的锁的node,已经存在了,就是已经被别人加锁了,那么就这里就会报错
// NodeExistsException
int count = 0;
while(true) {
try {
Thread.sleep(1000);
zookeeper.create(path, "".getBytes(),
Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
} catch (Exception e2) {
count++;
System.out.println("the " + count + " times try to acquire lock for " + path + "......");
continue;
}
System.out.println("success to acquire lock for " + path + " after " + count + " times try......");
break;
}
}
}
import com.alibaba.fastjson.JSONArray;
import com.alibaba.fastjson.JSONObject;
import com.roncoo.eshop.cache.model.ProductInfo;
import com.roncoo.eshop.cache.service.CacheService;
import com.roncoo.eshop.cache.spring.SpringContext;
import com.roncoo.eshop.cache.zk.ZooKeeperSession; /**
* 缓存预热线程
*/
public class CachePrewarmThread extends Thread { @Override
public void run() {
CacheService cacheService = (CacheService) SpringContext.
getApplicationContext().getBean("cacheService");
ZooKeeperSession zkSession = ZooKeeperSession.getInstance(); // 获取storm taskid列表
String taskidList = zkSession.getNodeData("/taskid-list"); if(taskidList != null && !"".equals(taskidList)) {
String[] taskidListSplited = taskidList.split(",");
for(String taskid : taskidListSplited) {
String taskidLockPath = "/taskid-lock-" + taskid; boolean result = zkSession.acquireFastFailedDistributedLock(taskidLockPath);
if(!result) {
continue;
} String taskidStatusLockPath = "/taskid-status-lock-" + taskid;
zkSession.acquireDistributedLock(taskidStatusLockPath);
//检查越热的状态
String taskidStatus = zkSession.getNodeData("/taskid-status-" + taskid); if("".equals(taskidStatus)) {
String productidList = zkSession.getNodeData("/task-hot-product-list-" + taskid);
JSONArray productidJSONArray = JSONArray.parseArray(productidList); for(int i = 0; i < productidJSONArray.size(); i++) {
Long productId = productidJSONArray.getLong(i);
String productInfoJSON = "{\"id\": " + productId + ", \"name\": \"iphone7手机\", \"price\": 5599, \"pictureList\":\"a.jpg,b.jpg\", \"specification\": \"iphone7的规格\", \"service\": \"iphone7的售后服务\", \"color\": \"红色,白色,黑色\", \"size\": \"5.5\", \"shopId\": 1, \"modifiedTime\": \"2017-01-01 12:00:00\"}";
ProductInfo productInfo = JSONObject.parseObject(productInfoJSON, ProductInfo.class);
cacheService.saveProductInfo2LocalCache(productInfo);
cacheService.saveProductInfo2ReidsCache(productInfo);
} zkSession.setNodeData(taskidStatusLockPath, "success");
} zkSession.releaseDistributedLock(taskidStatusLockPath); zkSession.releaseDistributedLock(taskidLockPath);
}
}
} }
import com.alibaba.fastjson.JSONArray;
import com.alibaba.fastjson.JSONObject;
import com.roncoo.eshop.cache.model.ProductInfo;
import com.roncoo.eshop.cache.service.CacheService;
import com.roncoo.eshop.cache.spring.SpringContext;
import com.roncoo.eshop.cache.zk.ZooKeeperSession; /**
* 缓存预热线程
*/
public class CachePrewarmThread extends Thread { @Override
public void run() {
CacheService cacheService = (CacheService) SpringContext.
getApplicationContext().getBean("cacheService");
ZooKeeperSession zkSession = ZooKeeperSession.getInstance(); // 获取storm taskid列表
String taskidList = zkSession.getNodeData("/taskid-list"); if(taskidList != null && !"".equals(taskidList)) {
String[] taskidListSplited = taskidList.split(",");
for(String taskid : taskidListSplited) {
String taskidLockPath = "/taskid-lock-" + taskid; boolean result = zkSession.acquireFastFailedDistributedLock(taskidLockPath);
if(!result) {
continue;
} String taskidStatusLockPath = "/taskid-status-lock-" + taskid;
zkSession.acquireDistributedLock(taskidStatusLockPath);
//检查越热的状态
String taskidStatus = zkSession.getNodeData("/taskid-status-" + taskid); if("".equals(taskidStatus)) {
String productidList = zkSession.getNodeData("/task-hot-product-list-" + taskid);
JSONArray productidJSONArray = JSONArray.parseArray(productidList); for(int i = 0; i < productidJSONArray.size(); i++) {
Long productId = productidJSONArray.getLong(i);
String productInfoJSON = "{\"id\": " + productId + ", \"name\": \"iphone7手机\", \"price\": 5599, \"pictureList\":\"a.jpg,b.jpg\", \"specification\": \"iphone7的规格\", \"service\": \"iphone7的售后服务\", \"color\": \"红色,白色,黑色\", \"size\": \"5.5\", \"shopId\": 1, \"modifiedTime\": \"2017-01-01 12:00:00\"}";
ProductInfo productInfo = JSONObject.parseObject(productInfoJSON, ProductInfo.class);
cacheService.saveProductInfo2LocalCache(productInfo);
cacheService.saveProductInfo2ReidsCache(productInfo);
} zkSession.setNodeData(taskidStatusLockPath, "success");
} zkSession.releaseDistributedLock(taskidStatusLockPath); zkSession.releaseDistributedLock(taskidLockPath);
}
}
} }
nginx+lua访问流量实时上报kafka的更多相关文章
- Nginx + LUA下流量拦截算法
前言 每逢大促必压测,每逢大促必限流,这估计是电商人的常态.每次大促期间,业务流量是平时的几倍十几倍,大促期间大部分业务都会集中在购物车结算,必须限流,才能保证系统不宕机. 限流算法 限流算法一般有三 ...
- 简单版nginx lua 完成流量上报于中间件
本文链接:https://www.cnblogs.com/zhenghongxin/p/9131226.html 公司某些业务下,需要将请求的流量上报于中间件(kafka,rabbitMq等),让st ...
- CentOS6.9安装Filebeat监控Nginx的访问日志发送到Kafka
一.下载地址: 官方:https://www.elastic.co/cn/downloads/beats/filebeat 百度云盘:https://pan.baidu.com/s/1dvhqb0 二 ...
- #研发解决方案#基于Apriori算法的Nginx+Lua+ELK异常流量拦截方案
郑昀 基于杨海波的设计文档 创建于2015/8/13 最后更新于2015/8/25 关键词:异常流量.rate limiting.Nginx.Apriori.频繁项集.先验算法.Lua.ELK 本文档 ...
- 基于Apriori算法的Nginx+Lua+ELK异常流量拦截方案 郑昀 基于杨海波的设计文档(转)
郑昀 基于杨海波的设计文档 创建于2015/8/13 最后更新于2015/8/25 关键词:异常流量.rate limiting.Nginx.Apriori.频繁项集.先验算法.Lua.ELK 本文档 ...
- 【原创】运维基础之OpenResty(Nginx+Lua)+Kafka
使用docker部署 1 下载 # wget https://github.com/doujiang24/lua-resty-kafka/archive/v0.06.tar.gz# tar xvf v ...
- nginx lua集成kafka
NGINX lua集成kafka 第一步:进入opresty目录 [root@node03 openresty]# cd /export/servers/openresty/ [root@node03 ...
- flink---实时项目--day01--1. openrestry的安装 2. 使用nginx+lua将日志数据写入指定文件中 3. 使用flume将本地磁盘中的日志数据采集到的kafka中去
1. openrestry的安装 OpenResty = Nginx + Lua,是⼀一个增强的Nginx,可以编写lua脚本实现⾮非常灵活的逻辑 (1)安装开发库依赖 yum install -y ...
- 利用ngxtop实时监控nginx的访问情况
关于对nginx web server的实时访问的实时监控问题,我很久之前就想实现的,现在虽有nginx自带的status扩展,但那是全局的,无法细分到vhost,并且提供的metric也很少,加之目 ...
随机推荐
- planning algorithms chapter 3
chapter 3 几何表示和变换 P.S: 总算到了 motion planning 部分了 几何建模 几何建模主要有两类方法:边界表示法和实体表示法. 环境模型可以是二维或三维,实体主要包括障碍物 ...
- SpringBoot + CXF快速实现SOAP WebService(支持Basic Auth)
唠叨两句 讲真,SOAP跟现在流行的RESTful WebService比起来显得很难用.冗余的XML文本信息太多,可读性差,它的请求信息有时很难手动构造,不太好调试.不过说归说,对某些企业用户来说S ...
- java复制对象之深拷背
在java开发中,有时我们需要复制对象,并且确保修改复制得到的对象不会影响原来的对象. 于是,有些人可能会写出类似以下的代码: public class CloneTest { public stat ...
- 数据库与spring事务传播特性
一.spring事务管理的实现原理,基于AOP 1) REQUIRED ,这个是默认的属性 Support a current transaction, create a new one if non ...
- [Beta]Scrum Meeting#10
github 本次会议项目由PM召开,时间为5月15日晚上10点30分 时长15分钟 任务表格 人员 昨日工作 下一步工作 木鬼 撰写博客整理文档 撰写博客整理文档 swoip 为适应新功能调整布局前 ...
- 范仁义html+css课程---11、html补充知识
范仁义html+css课程---11.html补充知识 一.总结 一句话总结: 小于号(<):< 大于号(>):> 空格: 二.html 字符实体 1.小于号(<)和大 ...
- RSA加密公钥系数获取结果多00
写在前面 本文是在解决加密和解密用的不是同一套密钥对时找到的一篇, 最后问题不在byte数组, 是自己工具类中生成密钥对的问题, 但是本文RSA加密中公钥指数和公钥系数的获取(byte[]部分)讲解比 ...
- C++ list运用实例
C++ list运用实例 #include <list> #include <iostream> #include <algorithm> #include < ...
- Vue基础知识学习笔记
一.环境搭建1.安装nodejs ((https://nodejs.org/en/)2.安装脚手架 npm install --global vue-cli /cnmp install --globa ...
- LeetCode 108. Convert Sorted Array to Binary Search Tree (将有序数组转换成BST)
108. Convert Sorted Array to Binary Search Tree Given an array where elements are sorted in ascendin ...