【题解】Luogu P5328 [ZJOI2019]浙江省选
原题传送门
看起来挺妙实际很暴力的一题
已知每个选手的分数都是平面上的直线
题目实际就是让我们求每条直线在整点处最大是第几大
我们考虑先对所有的直线进行半平面交(因为\(a_i\)都是正整数,所以比普通的还简单),我们珂以求出哪几个选手最高能拿到rak1
我们再考虑哪几个选手最高珂以拿到rak2
对剩下的人所表示的线段进行半平面交,我们珂以二分查找出之前已经删除的线段每个线段在哪个区间比现在的半平面边界高,打上标记(差分),进行排序,然后扫描线一遍,看到底有哪几个人上面的标记是1的,将这些人的答案标成2
以此类推,我们做m次半平面交,就能求出我们所需答案,时间复杂度\(O(mn\log n)\)
#include <bits/stdc++.h>
#define ll long long
#define N 100005
#define getchar nc
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline ll read()
{
register ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*f;
}
inline void write(register int x)
{
if(!x)putchar('0');if(x<0)x=-x,putchar('-');
static int sta[20];register int tot=0;
while(x)sta[tot++]=x%10,x/=10;
while(tot)putchar(sta[--tot]+48);
}
struct num{
ll a,b,c;
num(){a=b=0,c=1;}
num(register ll x,register ll y)
{
if(y<0)
x=-x,y=-y;
a=x/y;
b=x%y;
c=y;
if(b<0)
b+=c,--a;
}
inline ll floor(){return a;}
inline ll ceil(){return a+(b>0);}
inline bool operator<(const num &x)const{return a==x.a?b*x.c<x.b*c:a<x.a;}
inline bool operator<=(const num &x)const{return a==x.a?b*x.c<=x.b*c:a<x.a;}
}p[N];
int n,m,id[N],s[N],top,tot,ans[N];
ll a[N],b[N];
pair<ll,int> S[N<<1];
inline num cross(register int x,register int y)
{
return num(b[y]-b[x],a[x]-a[y]);
}
inline void work(register int k)
{
p[top=tot=0]=num(0,1);
for(register int i=1;i<=n;++i)
if(ans[id[i]]==-1&&a[id[i]]>a[s[top]])
{
while(top&&cross(id[i],s[top]).floor()<p[top].ceil())
--top;
s[++top]=id[i];
if(top>1)
p[top]=cross(s[top-1],id[i]);
}
p[top+1]=num(1ll<<60,1);
for(register int i=1;i<=n;++i)
if(ans[i]>0)
{
int l=1,r=top-1,res=top;
while(l<=r)
{
int mid=l+r>>1;
if(a[s[mid]]>=a[i]||cross(s[mid],i)<=p[mid+1])
res=mid,r=mid-1;
else
l=mid+1;
}
S[++tot]=make_pair(a[s[res]]>=a[i]?0ll:cross(s[res],i).floor()+1,1);
l=2,r=top,res=1;
while(l<=r)
{
int mid=l+r>>1;
if(a[s[mid]]<=a[i]||p[mid]<=cross(s[mid],i))
res=mid,l=mid+1;
else
r=mid-1;
}
if(a[s[res]]>a[i])
S[++tot]=make_pair(cross(s[res],i).ceil(),-1);
}
sort(S+1,S+1+tot);
for(register int i=1,j=1,x=0;i<=top;++i)
{
while(j<=tot&&S[j].first<=p[i].ceil())
x+=S[j++].second;
if(x<k)
ans[s[i]]=k;
while(j<=tot&&S[j].first<=p[i+1].floor())
{
int l=j;
while(l<=tot&&S[l].first==S[j].first)
x+=S[l++].second;
if(x<k)
ans[s[i]]=k;
j=l;
}
}
}
inline bool cmp(register int x,register int y)
{
return a[x]<a[y]||a[x]==a[y]&&b[x]>b[y];
}
int main()
{
n=read(),m=read();
for(register int i=1;i<=n;++i)
a[i]=read(),b[i]=read(),id[i]=i,ans[i]=-1;
sort(id+1,id+1+n,cmp);
for(register int i=1;i<=m;++i)
work(i);
for(register int i=1;i<=n;++i)
write(ans[i]),putchar(' ');
return 0;
}
【题解】Luogu P5328 [ZJOI2019]浙江省选的更多相关文章
- luogu P5328 [ZJOI2019]浙江省选
传送门 每个人都可以看成一条直线\(y=ax+b\),所以我们要求的是每条线在整点处,上方线的数量的最小值(注意多条直线如果交于同一整点互不影响) 如果\(m=1\),其实只要求出半平面交,然后在半平 ...
- 【LuoguP5328】[ZJOI2019]浙江省选
题目链接 题意 给你一堆斜率和纵截距都为正的直线 ,求对于一个条直线是否存在一个 x 使得在这条直线在 x 处能是前 m 大,输出最高能够达到的排名(排名定义为在 x 处严格大于自己的直线条数+1) ...
- [ZJOI2019]浙江省选(半平面交)
一眼看上去就应该能用半平面交去做. 首先考虑怎么求可能得第1名的人:每个人的函数为直线,就是在所有人的半平面交中的上边界者即可获得第一名,这个可以单调队列求解. 再考虑如何求可能得第2名的人:满足2个 ...
- Luogu P5296 [北京省选集训2019]生成树计数
Luogu P5296 [北京省选集训2019]生成树计数 题目链接 题目大意:给定每条边的边权.一颗生成树的权值为边权和的\(k\)次方.求出所有生成树的权值和. 我们列出答案的式子: 设\(E\) ...
- [题解] Luogu P5446 [THUPC2018]绿绿和串串
[题解] Luogu P5446 [THUPC2018]绿绿和串串 ·题目大意 定义一个翻转操作\(f(S_n)\),表示对于一个字符串\(S_n\), 有\(f(S)= \{S_1,S_2,..., ...
- 「ZJOI2019」浙江省选
在八月来临前补完了zjoi2019 本来是想在八月前做完暑假作业的? 传送门 Description 给\(n\)条斜率为正的直线,询问每条直线是否在某处高度为前\(m\)名,如果是,询问最小排名 S ...
- 【题解】Luogu P5327 [ZJOI2019]语言
原题传送门 看到这种树上统计点对个数的题一般是线段树合并,这题也不出意外 先对这棵树进行树剖,对于每次普及语言,在\(x,y\)两点的线段树上的\(x,y\)两位置打\(+1\)标记,在点\(fa[l ...
- 【题解】Luogu P5279 [ZJOI2019]麻将
原题传送门 希望这题不会让你对麻将的热爱消失殆尽 我们珂以统计每种牌出现的次数,不需要统计是第几张牌 判一副牌能不能和,类似这道题 对于这题: 设\(f[i][j][k][0/1]\)表示前\(i\) ...
- Luogu P5279 [ZJOI2019]麻将
ZJOI2019神题,间接送我退役的神题233 考场上由于T2写挂去写爆搜的时候已经没多少时间了,所以就写挂了233 这里不多废话直接开始讲正解吧,我们把算法分成两部分 1.建一个"胡牌自动 ...
随机推荐
- nginx if配置说明
格式:if (条件判断) { 具体的rewrite规则 } 条件举例: 条件判断语句由Nginx内置变量.逻辑判断符号和目标字符串三部分组成. 其中,内置变量是Nginx固定的非自定义的变量,如,$r ...
- MySQL中自增ID起始值修改方法
在实际测试工作过程中,有时因为生产环境已有历史数据原因,需要测试环境数据id从某个值开始递增,此时,我们需要修改数据库中自增ID起始值,下面以MySQL为例: 表名:users; 建表时添加: ); ...
- Linux查看文件的权限
Linux查看权限命令: ls -l 文件或文件夹 输出结果示例: 这里是查看tomcat文件夹中所有子文件或者子文件夹的权限,以列表的形式列出. 关于列表的每列所代表的含义参见我的另外一篇博客:Li ...
- Oncomine 数据库
网址 https://www.oncomine.org/resource/login.html Oncomine 是目前世界上最大的癌基因芯片数据库和整合数据挖掘平台,旨在挖掘癌症基因信息.Onco ...
- Shell 逐行读取文件的4中方法
方法1:while循环中执行效率最高,最常用的方法. function while_read_LINE_bottm(){ While read LINE do echo $LINE done < ...
- WebSocket专题(阿里)
我们的项目中使用了websocket 用java-websocket 开源项目做的,阿里的人问我用啥实现的websocket一时没有答上来 回来做了总结: 1.前言 最近有同学问我有没有做过在线咨询功 ...
- 2018-2019-2 20175211 实验四《Android程序设计》实验报告
目录 一.实验内容及步骤 1.Android Studio的安装测试 2.Activity测试 3.UI测试 4.布局测试 5.事件处理测试 二.问题及解决方法 三.代码托管 四.实验心得体会 一.实 ...
- SAS PROC SGPLOT
OPTIONS LS=MAX PS=MAX NOCENTER USER='.\00@Data'; PROC PRINT DATA=OpenDate;RUN; ODS LISTING GPATH='.\ ...
- UDP用于保持大量终端的在线与控制,应用与业务则通过TCP去实现。这个和FTP服务控制与数据分离,采取不同的连接,有异曲同工之处 端口映射老化时间
移动端IM/推送系统的协议选型:UDP还是TCP? http://www.52im.net/thread-33-1-1.html
- 异常值检测方法(Z-score,DBSCAN,孤立森林)
机器学习_深度学习_入门经典(博主永久免费教学视频系列) https://study.163.com/course/courseMain.htm?courseId=1006390023&sh ...