【题解】Luogu P5328 [ZJOI2019]浙江省选
原题传送门
看起来挺妙实际很暴力的一题
已知每个选手的分数都是平面上的直线
题目实际就是让我们求每条直线在整点处最大是第几大
我们考虑先对所有的直线进行半平面交(因为\(a_i\)都是正整数,所以比普通的还简单),我们珂以求出哪几个选手最高能拿到rak1
我们再考虑哪几个选手最高珂以拿到rak2
对剩下的人所表示的线段进行半平面交,我们珂以二分查找出之前已经删除的线段每个线段在哪个区间比现在的半平面边界高,打上标记(差分),进行排序,然后扫描线一遍,看到底有哪几个人上面的标记是1的,将这些人的答案标成2
以此类推,我们做m次半平面交,就能求出我们所需答案,时间复杂度\(O(mn\log n)\)
#include <bits/stdc++.h>
#define ll long long
#define N 100005
#define getchar nc
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline ll read()
{
register ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*f;
}
inline void write(register int x)
{
if(!x)putchar('0');if(x<0)x=-x,putchar('-');
static int sta[20];register int tot=0;
while(x)sta[tot++]=x%10,x/=10;
while(tot)putchar(sta[--tot]+48);
}
struct num{
ll a,b,c;
num(){a=b=0,c=1;}
num(register ll x,register ll y)
{
if(y<0)
x=-x,y=-y;
a=x/y;
b=x%y;
c=y;
if(b<0)
b+=c,--a;
}
inline ll floor(){return a;}
inline ll ceil(){return a+(b>0);}
inline bool operator<(const num &x)const{return a==x.a?b*x.c<x.b*c:a<x.a;}
inline bool operator<=(const num &x)const{return a==x.a?b*x.c<=x.b*c:a<x.a;}
}p[N];
int n,m,id[N],s[N],top,tot,ans[N];
ll a[N],b[N];
pair<ll,int> S[N<<1];
inline num cross(register int x,register int y)
{
return num(b[y]-b[x],a[x]-a[y]);
}
inline void work(register int k)
{
p[top=tot=0]=num(0,1);
for(register int i=1;i<=n;++i)
if(ans[id[i]]==-1&&a[id[i]]>a[s[top]])
{
while(top&&cross(id[i],s[top]).floor()<p[top].ceil())
--top;
s[++top]=id[i];
if(top>1)
p[top]=cross(s[top-1],id[i]);
}
p[top+1]=num(1ll<<60,1);
for(register int i=1;i<=n;++i)
if(ans[i]>0)
{
int l=1,r=top-1,res=top;
while(l<=r)
{
int mid=l+r>>1;
if(a[s[mid]]>=a[i]||cross(s[mid],i)<=p[mid+1])
res=mid,r=mid-1;
else
l=mid+1;
}
S[++tot]=make_pair(a[s[res]]>=a[i]?0ll:cross(s[res],i).floor()+1,1);
l=2,r=top,res=1;
while(l<=r)
{
int mid=l+r>>1;
if(a[s[mid]]<=a[i]||p[mid]<=cross(s[mid],i))
res=mid,l=mid+1;
else
r=mid-1;
}
if(a[s[res]]>a[i])
S[++tot]=make_pair(cross(s[res],i).ceil(),-1);
}
sort(S+1,S+1+tot);
for(register int i=1,j=1,x=0;i<=top;++i)
{
while(j<=tot&&S[j].first<=p[i].ceil())
x+=S[j++].second;
if(x<k)
ans[s[i]]=k;
while(j<=tot&&S[j].first<=p[i+1].floor())
{
int l=j;
while(l<=tot&&S[l].first==S[j].first)
x+=S[l++].second;
if(x<k)
ans[s[i]]=k;
j=l;
}
}
}
inline bool cmp(register int x,register int y)
{
return a[x]<a[y]||a[x]==a[y]&&b[x]>b[y];
}
int main()
{
n=read(),m=read();
for(register int i=1;i<=n;++i)
a[i]=read(),b[i]=read(),id[i]=i,ans[i]=-1;
sort(id+1,id+1+n,cmp);
for(register int i=1;i<=m;++i)
work(i);
for(register int i=1;i<=n;++i)
write(ans[i]),putchar(' ');
return 0;
}
【题解】Luogu P5328 [ZJOI2019]浙江省选的更多相关文章
- luogu P5328 [ZJOI2019]浙江省选
传送门 每个人都可以看成一条直线\(y=ax+b\),所以我们要求的是每条线在整点处,上方线的数量的最小值(注意多条直线如果交于同一整点互不影响) 如果\(m=1\),其实只要求出半平面交,然后在半平 ...
- 【LuoguP5328】[ZJOI2019]浙江省选
题目链接 题意 给你一堆斜率和纵截距都为正的直线 ,求对于一个条直线是否存在一个 x 使得在这条直线在 x 处能是前 m 大,输出最高能够达到的排名(排名定义为在 x 处严格大于自己的直线条数+1) ...
- [ZJOI2019]浙江省选(半平面交)
一眼看上去就应该能用半平面交去做. 首先考虑怎么求可能得第1名的人:每个人的函数为直线,就是在所有人的半平面交中的上边界者即可获得第一名,这个可以单调队列求解. 再考虑如何求可能得第2名的人:满足2个 ...
- Luogu P5296 [北京省选集训2019]生成树计数
Luogu P5296 [北京省选集训2019]生成树计数 题目链接 题目大意:给定每条边的边权.一颗生成树的权值为边权和的\(k\)次方.求出所有生成树的权值和. 我们列出答案的式子: 设\(E\) ...
- [题解] Luogu P5446 [THUPC2018]绿绿和串串
[题解] Luogu P5446 [THUPC2018]绿绿和串串 ·题目大意 定义一个翻转操作\(f(S_n)\),表示对于一个字符串\(S_n\), 有\(f(S)= \{S_1,S_2,..., ...
- 「ZJOI2019」浙江省选
在八月来临前补完了zjoi2019 本来是想在八月前做完暑假作业的? 传送门 Description 给\(n\)条斜率为正的直线,询问每条直线是否在某处高度为前\(m\)名,如果是,询问最小排名 S ...
- 【题解】Luogu P5327 [ZJOI2019]语言
原题传送门 看到这种树上统计点对个数的题一般是线段树合并,这题也不出意外 先对这棵树进行树剖,对于每次普及语言,在\(x,y\)两点的线段树上的\(x,y\)两位置打\(+1\)标记,在点\(fa[l ...
- 【题解】Luogu P5279 [ZJOI2019]麻将
原题传送门 希望这题不会让你对麻将的热爱消失殆尽 我们珂以统计每种牌出现的次数,不需要统计是第几张牌 判一副牌能不能和,类似这道题 对于这题: 设\(f[i][j][k][0/1]\)表示前\(i\) ...
- Luogu P5279 [ZJOI2019]麻将
ZJOI2019神题,间接送我退役的神题233 考场上由于T2写挂去写爆搜的时候已经没多少时间了,所以就写挂了233 这里不多废话直接开始讲正解吧,我们把算法分成两部分 1.建一个"胡牌自动 ...
随机推荐
- 为什么学习JavaScript设计模式,因为它是核心
那么什么是设计模式呢?当我们在玩游戏的时候,我们会去追求如何最快地通过,去追求获得已什么高效率的操作获得最好的奖品:下班回家,我们打开手机app查询最便捷的路线去坐车:叫外卖时候,也会找附近最近又实惠 ...
- linux 系统添加jdk环境变量
export JAVA_HOME=/usr/local/jdk1..0_79 export JAVA_BIN=$JAVA_HOME/bin export PATH=$PATH:$JAVA_BIN ex ...
- 倍增&矩阵乘法 专题复习
倍增&矩阵乘法 专题复习 PreWords 这两个基础算法我就不多说啦,但是还是要介绍一下" 广义矩阵 "乘法 其实就是把矩阵换成取\(max\),然后都一样... 据神仙 ...
- myeclipse的安装与破解
myeclipe安装和破解一直困扰我很长时间,我又是尴尬症的人,不破解就是不行,花费一天时间终于搞定是怎么破解的. 一:首先myeclipse的官方下载网站www.myeclipsecn.com/do ...
- 如何将 普通代码变成 java lamband表达式
public static void main(String[] args) { Map<String, String> map = new HashMap<>(); List ...
- 暑假gosh计划
[要参与的事项]: 1.大创 2.CTF 3.ACM 4.自己的巴拉巴拉巴 [基本目标]: 1.大创 学完一本Java入门教材 学习Material Design,了解典型交互,进行ui初步设计 2. ...
- JavaScript初探系列(六)——函数
一.概述 (一)函数的声明 JavaScript 有三种声明函数的方法. (1)function 命令 function命令声明的代码区块,就是一个函数.function命令后面是函数名,函数名后面是 ...
- 第08组 Beta冲刺(4/4)
队名 八组评分了吗 组长博客链接(5分) ( https://www.cnblogs.com/leemelon/p/12040924.html ) 作业博客 [作业链接] (https://edu.c ...
- Django实现自动发布(3发布-升级和回退)
发布实际上就是将服务的某个版本和一台主机关联,我用一张表(MicroServiceInstance)记录了主机id.服务id.版本id,目前一台主机只能部署一个版本,所以主机id和服务id要做联合索引 ...
- zookeeper核心原理全面解析
下述各zookeeper机制的java客户端实践参考zookeeper java客户端之curator详解. 官方文档http://zookeeper.apache.org/doc/current/z ...