【题解】逆序排列 [51nod1020]
【题解】逆序排列 [51nod1020]
【题目描述】
共 \(T\) 组测试点,每一组给出 \(2\) 个整数 \(n\) 和 \(k\),在 \([1,n]\) 共 \(n\) 个数字的全排列中,逆序数为 \(k\) 的排列种数,答案对 \(1e9+7\) 取模。
【样例】
样例输入:
1
4 3
样例输出:
6
【数据范围】
\(100\%\) \(1 \leqslant T \leqslant 10000,\) \(1 \leqslant N \leqslant 1000,\) \(1 \leqslant K \leqslant 20000\)
【分析】
用 \(dp[i][j]\) 表示 \([1,i]\) 的排列中逆序对数为 \(j\) 的排列种数,为方便枚举,用 \(ss[i]\) 表示长度为 \(i\) 的排列总数\((ss[i]=min\{K,\frac{i*(i-1)}{2}\}\)。
对于数字 \(i\) 来说,在一个 \([1,i-1]\) 的排列中它有 \(i\) 个位置可以加入,加下 \(i\) 之后新构成的逆序对数 \(k\in [0,i-1]\) 。
那么 \(dp\) 方程就出来了:\(dp[i][j]+=dp[i-1][j-k]\),其中 \(0 \leqslant j \leqslant ss[i],\) \(0 \leqslant j-k \leqslant ss[i-1]\) ,所以 \(max\{0,j-ss[i-1]\} \leqslant k \leqslant min\{j,i-1\}\) 。
即 \(dp[i][j]=\sum_{k=max\{0,j-ss[i-1]\}}^{min\{j,i-1\}}dp[i-1][j-k]\) 。
时间复杂度过高,要用前缀和优化一下,\(dp[i][j]=S[j-max(0,j-ss[i-1])]-S[j-min(i-1,j)-1]\),其中 \(S[i]=\sum_{j=0}^{i}dp[i-1][j]\) 。
但是前缀和下边界可能会取到 \(0\),减了 \(1\) 之后就成了 \(-1\),\(S[-1]\)是不存在的,所以每一次写 \(S[x]\) 都要改成 \(S[x+1]\)
还要先预处理答案,询问时直接 \(O(1)\) 查询。
时间复杂度为 \(O(NK)\) 。
【Code】
#include<algorithm>
#include<cstring>
#include<cstdio>
#define LL long long
#define Re register int
using namespace std;
const int N=1003,M=2e4+3,P=1e9+7;
int T,n,K,S[M],ss[N],dp[N][M];
inline void in(Re &x){
int f=0;x=0;char c=getchar();
while(c<'0'||c>'9')f|=c=='-',c=getchar();
while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
x=f?-x:x;
}
int main(){
n=1000,K=20000;
for(Re i=2;i<=n;++i){
ss[i]=i*(i-1)>>1;
if(ss[i]>K){for(Re j=i;j<=n;++j)ss[j]=K;break;}
}
for(Re i=1;i<=n;++i)dp[i][0]=1;
for(Re j=0;j<=ss[2];++j)(S[j+1]=S[j-1+1]+dp[1][j])%=P;
for(Re i=2;i<=n;++i){
for(Re j=1;j<=ss[i];++j)(dp[i][j]=(S[j-max(0,j-ss[i-1])+1]-S[j-min(i-1,j)-1+1]+P)%P)%=P;
for(Re j=0;j<=ss[i+1];++j)(S[j+1]=S[j-1+1]+dp[i][j])%=P;
}
in(T);while(T--)in(n),in(K),printf("%d\n",dp[n][K]);
}
【题解】逆序排列 [51nod1020]的更多相关文章
- 51nod 1020 逆序排列 DP
在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数. 如2 4 3 1中,2 1,4 3,4 1,3 1是逆序 ...
- SQL-27 给出每个员工每年薪水涨幅超过5000的员工编号emp_no、薪水变更开始日期from_date以及薪水涨幅值salary_growth,并按照salary_growth逆序排列。 提示:在sqlite中获取datetime时间对应的年份函数为strftime('%Y', to_date)
题目描述 给出每个员工每年薪水涨幅超过5000的员工编号emp_no.薪水变更开始日期from_date以及薪水涨幅值salary_growth,并按照salary_growth逆序排列. 提示:在s ...
- SQL-15 查找employees表所有emp_no为奇数,且last_name不为Mary的员工信息,并按照hire_date逆序排列
题目描述 查找employees表所有emp_no为奇数,且last_name不为Mary的员工信息,并按照hire_date逆序排列CREATE TABLE `employees` (`emp_no ...
- Java数组逆序排列
//逆序排列原理 /* A: 数组逆序原理* a: 题目分析* 通过观察发现,本题目要实现原数组元素倒序存放操作.即原数组存储元素为{12,69,852,25,89,588},逆序后为原数组存储元素变 ...
- 51nod 1020 逆序排列 递推DP
1020 逆序排列 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么 ...
- C语言 · 逆序排列
算法提高 逆序排列 时间限制:1.0s 内存限制:512.0MB 问题描述 编写一个程序,读入一组整数(不超过20个),并把它们保存在一个整型数组中.当用户输入0时,表示输入结束.然 ...
- 算法笔记_158:算法提高 逆序排列(Java)
目录 1 问题描述 2 解决方案 1 问题描述 问题描述 编写一个程序,读入一组整数(不超过20个),并把它们保存在一个整型数组中.当用户输入0时,表示输入结束.然后程序将把这个数组中的值按逆序重新存 ...
- 51nod 1020 逆序排列——dp
在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数. 如2 4 3 1中,2 1,4 3,4 1,3 1是逆序 ...
- 1020 逆序排列(DP)
1020 逆序排列 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序 ...
随机推荐
- LDA-作为线性判别 降维 推导
LDA 降维原理 前面对 LDA 作为作为分类器 有详细推导, 其核心就是 贝叶斯公式, 已知全概率, 求(条件概率)最大先验概率, 类似的问题. 而 LDA 如果作为 降维 的原理是: a. 将带上 ...
- PO设计模式
BasePage类: 在PO模式中抽象封装成一个BasePage类,该基类应该拥有一个只实现webdriver实例的属性. 基础页面类中包含公用方法:点击.输入.获取元素等 Page: 每个页面封装为 ...
- 阿里云查看本服务器 公网ip地址 命令
阿里云的服务器用命令ifconfig查看的是本机内网地址 那如何访问公网地址呢? curl httpbin.org/ip
- intellij idea 新建springboot工程pom.xml报错
今天使用idea新建的springboot工程pom.xml文件报错如下 1. 问题 'settings.xml' has syntax errors less... (Ctrl+F1) Inspec ...
- NiFi使用总结 一 hive到hive的PutHiveStreaming processor和SelectHiveQL
我说实话,NiFi的坑真的挺多的... 1.PutHiveStreaming processor的使用 具体配置可参考:https://community.hortonworks.com/articl ...
- Kdevelop的安装-2种方法
使用 Ubuntu 的自带的源: sudo apt-get update sudo apt-get install kdevelop 这就可以了.update这部,假如不换源,更新非常慢.换源方法很简 ...
- conda管理python环境
https://blog.csdn.net/wld914674505/article/details/80615761 source activate python36
- java生成前端验证码+验证「kaptcha」
1.前言 kaptcha是一个非常实用的短信验证码生成工具,通过简单配置即可实现多样化的验证码. 2.引入依赖 <!--第三方验证码--><dependency> < ...
- Layui 关闭当前标签页
parent.layui.admin.events.closeThisTabs();
- BILIBILI之滑块验证
bilibili的滑动验证码图片比较好玩,和前一篇不大一样. 采用canvas方法,分析发现只找到一个图片,不过,可以通过设置display截图方式获得2张图(完整图片,带缺口的图片),取得图片后接下 ...