【传送门】

FFT第一题!

构造多项式 $A(x) = \sum x ^ {s_i}$。

不考虑题目中 $i < j < k$ 的条件,那么 $A^3(x)$ 每一项对应的系数就是答案了。

考虑容斥。

$$(\sum x)^3 = \sum x^3 + 3 \sum x^2 y + 6\sum xyz$$

$$(\sum x^2) (\sum x)= \sum x^3 + \sum x^2 y$$

所以 $$\sum xyz = \dfrac{(\sum x)^3 - 3 (\sum x^2)(\sum x) + 2 \sum x^3}{6}$$

#include <bits/stdc++.h>

struct Complex {
double r, i;
Complex(double r = 0.0, double i = 0.0): r(r), i(i) {}
Complex operator + (const Complex &p) const { return Complex(r + p.r, i + p.i); }
Complex operator - (const Complex &p) const { return Complex(r - p.r, i - p.i); }
Complex operator * (const Complex &p) const { return Complex(r * p.r - i * p.i, r * p.i + i * p.r); }
}; const double pi = acos(-1.0);
const int N = 2e5 + ;
int n, limit, r[N], l;
int v[N], A[N], B[N], C[N];
Complex a[N], b[N], c[N]; void FFT(Complex *a, int pd) {
for (int i = ; i < limit; i++)
if (i < r[i])
std::swap(a[i], a[r[i]]);
for (int mid = ; mid < limit; mid <<= ) {
Complex wn = Complex(cos(pi / mid), pd * sin(pi / mid));
for (int l = mid << , j = ; j < limit; j += l) {
Complex w = Complex(1.0, 0.0);
for (int k = ; k < mid; k++, w = w * wn) {
Complex u = a[k + j], v = w * a[k + j + mid];
a[k + j] = u + v;
a[k + j + mid] = u - v;
}
}
}
if (pd == -)
for (int i = ; i < limit; i++)
a[i] = Complex(a[i].r / limit, a[i].i / limit);
} int main() {
scanf("%d", &n);
for (int i = ; i < n; i++) {
int x;
scanf("%d", &x);
x += ;
A[x]++;
B[x * ]++;
C[x * ]++;
}
for (int i = ; i <= ; i++)
a[i] = Complex((double)A[i], 0.0);
for (int i = ; i <= ; i++)
b[i] = Complex((double)B[i], 0.0);
limit = ;
while (limit <= + )
limit <<= , l++;
for (int i = ; i < limit; i++)
r[i] = r[i >> ] >> | ((i & ) << (l - ));
FFT(a, );
FFT(b, );
for (int i = ; i < limit; i++)
b[i] = b[i] * a[i];
for (int i = ; i < limit; i++)
a[i] = a[i] * a[i] * a[i];
FFT(a, -);
FFT(b, -);
for (int i = ; i <= ; i++) {
long long ans = (long long)((a[i].r - 3.0 * b[i].r + 2.0 * C[i]) / 6.0 + 0.5);
if (ans > )
printf("%d : %lld\n", i - , ans);
}
return ;
}

SPOJ - Triple Sums的更多相关文章

  1. 2018.11.18 spoj Triple Sums(容斥原理+fft)

    传送门 这次fftfftfft乱搞居然没有被卡常? 题目简述:给你nnn个数,每三个数ai,aj,ak(i<j<k)a_i,a_j,a_k(i<j<k)ai​,aj​,ak​( ...

  2. SPOJ Triple Sums(FFT+容斥原理)

    # include <cstdio> # include <cstring> # include <cstdlib> # include <iostream& ...

  3. SPOJ TSUM Triple Sums(FFT + 容斥)

    题目 Source http://www.spoj.com/problems/TSUM/ Description You're given a sequence s of N distinct int ...

  4. SPOJ:Triple Sums(母函数+FFT)

    You're given a sequence s of N distinct integers.Consider all the possible sums of three integers fr ...

  5. spoj TSUM - Triple Sums fft+容斥

    题目链接 首先忽略 i < j < k这个条件.那么我们构造多项式$$A(x) = \sum_{1现在我们考虑容斥:1. $ (\sum_{}x)^3 = \sum_{}x^3 + 3\s ...

  6. Spoj 8372 Triple Sums

    题意:给你n个数字,对于任意s,s满足\(s=u_i+u_j+u_k,i<j<k\),要求出所有的s和对应满足条件的i,j,k的方案数 Solution: 构造一个函数:\(A(x)=\s ...

  7. SPOJ #453. Sums in a Triangle (tutorial)

    It is a small fun problem to solve. Since only a max sum is required (no need to print path), we can ...

  8. [SP8372-TSUM]Triple Sums

    题面在这里 description 某\(B\)姓\(OJ\)权限题 给出\(n\)个正整数\(a[i]\),求\(i<j<k\)且\(S=a[i]+a[j]+a[k]\)的三元组\((i ...

  9. spoj-TSUM Triple Sums

    题目描述 题解: 很吊的容斥+$FFT$,但是并不难. 首先,由于有重复,我们要容斥. 怎么办? 记录三个多项式, 只取一个:$w1$; 相同物体拿两个:$w2$; 相同物体拿三个:$w3$; 然后答 ...

随机推荐

  1. nodejs 连接MySQL后,输出数据带有RowDataPacket、中括号大括号怎么去掉?

    var mysql = require('mysql'); var connection = mysql.createConnection({ host : 'localhost', user : ' ...

  2. 大话设计模式Python实现-工厂方法模式

    工厂方法模式(Factory Method Pattern):定义一个用于创建对象的接口,让子类决定实例化哪一个类,工厂方法使一个类的实例化延时到其子类. #!/usr/bin/env python ...

  3. vuex 源码分析(一) 使用方法和代码结构

    Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式,它采用集中式存储管理应用的所有组件的状态,注意:使用前需要先加载vue文件才可以使用(在node.js下需要使用Vue.use(Vuex ...

  4. RabbitMQ如何保证消息99.99%被发送成功?

    1. 本篇概要 RabbitMQ针对这个问题,提供了以下几个机制来解决: 生产者确认 持久化 手动Ack 本篇博客我们先讲解下生产者确认机制,剩余的机制后续单独写博客进行讲解. 2. 生产者确认 要想 ...

  5. vue.js过度&动画、混入&插件

    1.vue  过度动画 1.过度 Vue 在插入.更新或者移除 DOM 时,提供多种不同方式的应用过渡效果.Vue 提供了内置的过渡封装组件,该组件用于包裹要实现过渡效果的组件. 语法格式: < ...

  6. kali渗透综合靶机(十八)--FourAndSix2靶机

    kali渗透综合靶机(十八)--FourAndSix2靶机 靶机下载地址:https://download.vulnhub.com/fourandsix/FourAndSix2.ova 一.主机发现 ...

  7. IP 跟踪

    #coding=utf-8import sysimport os import re import urllibimport subprocess def getlocation(ip): resul ...

  8. pytest-Mark数据驱动

    数据驱动 import pytest @pytest.mark.parametrize(("a", "b", "expected"), [ ...

  9. Vue中iframe和组件的通信

    最近的项目开发中用到了Vue组件中嵌套iframe,相应的碰到了组件和HTML的通信问题,场景如下:demo.vue中嵌入 test.html 由于一般的iframe嵌套是用于HTML文件的,在vue ...

  10. Centos 7 修改网卡名称、静态IP

    修改内核选项 # vim /etc/sysconfig/grub GRUB_TIMEOUT= GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc ...