暴力\(DP\)

考虑暴力\(DP\),我们设\(f_{i,j}\)表示当前覆盖长度为\(i\),上一次折叠长度为\(j\)的方案数。

转移时需要再枚举这次的折叠长度\(k\)(\(k\ge j\)),转移方程如下:

\[f_{i+2k-j,k}+=f_{i,j}
\]

对于左、右两边,根据不同的初始化\(DP\)两遍。

统计时枚举两边覆盖长度计算即可。

优化\(DP\)

实际上,我们可以把这个\(DP\)拆成两个数组,一个表示左端点在\(x\)位的方案数,另一个表示右端点在\(y\)位的方案数。

转移时,方程也是比较简洁的:

\[a_{x+i}+=a_x,b_{x+2i}+=a_x
\]

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 10000
#define X 998244353
#define Inc(x,y) ((x+=(y))>=X&&(x-=X))
using namespace std;
int n,l,r;
class Dper
{
private:
int f[N+5],g[N+5],p[N+5];
public:
I void Solve()
{
#define DP(s,x,y) for(p[0]=i=1,t=n-y;i<=n;++i) p[i]=0;\
for(i=x;2*i<=t;++i) for(j=0;2*i+j<=t;++j) Inc(p[i+j],p[j]),Inc(s[2*i+j],p[j]);++s[x];//用#define简洁表示两次DP
RI i,j,t,ans=0;DP(f,l,r);DP(g,r,l);//DP预处理
for(i=l;i<=n-r;++i) ans=(1LL*f[i]*g[n-i]+ans)%X,Inc(f[i+1],f[i]);printf("%d",ans);//统计答案
}
}D;
int main()
{
freopen("fold.in","r",stdin),freopen("fold.out","w",stdout);
return scanf("%d%d%d",&n,&l,&r),D.Solve(),0;
}

【2019.7.16 NOIP模拟赛 T2】折叠(fold)(动态规划)的更多相关文章

  1. 【2019.8.20 NOIP模拟赛 T2】小B的树(tree)(树形DP)

    树形\(DP\) 考虑设\(f_{i,j,k}\)表示在\(i\)的子树内,从\(i\)向下的最长链长度为\(j\),\(i\)子树内直径长度为\(k\)的概率. 然后我们就能发现这个东西直接转移是几 ...

  2. 【2019.7.20 NOIP模拟赛 T2】B(B)(数位DP)

    数位\(DP\) 首先考虑二进制数\(G(i)\)的一些性质: \(G(i)\)不可能有连续两位第\(x\)位和第\(x+1\)位都是\(1\).因为这样就可以进位到第\(x+2\)位.其余情况下,这 ...

  3. 【2019.7.16 NOIP模拟赛 T1】洗牌(shuffle)(找环)

    找环 考虑每次洗牌其实是一次置换的过程,而这样必然就会有循环出现. 因此我们直接通过枚举找出每一个循环,询问时只要找到环上对应的位置就可以了. 貌似比我比赛时被卡成\(30\)分的倍增简单多了? 代码 ...

  4. 【2019.7.15 NOIP模拟赛 T2】与非树(nand)(树形DP)

    树形\(DP\) 实际上,这道题应该不是很难. 我们设\(f_{x,i,j}\)表示在以\(x\)为根的子树内,原本应输出\(i\),结果输出了\(j\)的情况数. 转移时,为了方便,我们先考虑与,再 ...

  5. 10.16 NOIP模拟赛

    目录 2018.10.16 NOIP模拟赛 A 购物shop B 期望exp(DP 期望 按位计算) C 魔法迷宫maze(状压 暴力) 考试代码 C 2018.10.16 NOIP模拟赛 时间:2h ...

  6. 2018.10.16 NOIP模拟赛解题报告

    心路历程 预计得分:\(100 + 100 + 20 = 220\) 实际得分:\(100 + 100 + 30 = 230\) 辣鸡模拟赛.. T1T2都是一眼题,T3考验卡常数还只有一档暴力分. ...

  7. 2019.7.26 NOIP 模拟赛

    这次模拟赛真的,,卡常赛. The solution of T1: std是打表,,考场上sb想自己改进匈牙利然后wei了(好像匈牙利是错的. 大力剪枝搜索.代码不放了. 这是什么神仙D1T1,爆蛋T ...

  8. 20161005 NOIP 模拟赛 T2 解题报告

    beautiful 2.1 题目描述 一个长度为 n 的序列,对于每个位置 i 的数 ai 都有一个优美值,其定义是:找到序列中最 长的一段 [l, r],满足 l ≤ i ≤ r,且 [l, r] ...

  9. 20161003 NOIP 模拟赛 T2 解题报告

    Weed duyege的电脑上面已经长草了,经过辨认上面有金坷垃的痕迹. 为了查出真相,duyege 准备修好电脑之后再进行一次金坷垃的模拟实验. 电脑上面有若干层金坷垃,每次只能在上面撒上一层高度为 ...

随机推荐

  1. guava(四)区间Ranges

    一.构建区间 (a..b) open(C, C) [a..b] closed(C, C) [a..b) closedOpen(C, C) (a..b] openClosed(C, C) (a..+∞) ...

  2. 物联网架构成长之路(43)-k8s从入门到放弃

    0. 前言 这段时间要入门一下CI/CD了,以前简单的了解过Jenkins,现在要把以下的这个图的架构搭建起来.国外可能一两个命令就安装完成的事情,我折腾了2天多,真的差点放弃了. 1. 安装Virt ...

  3. 【解决错误】Non-reversible reg-exp portion: '(?i'

    在将Django升级到2.1后,运行 Django 自带后台后,或 使用 redirect 方法,就一直报错:Non-reversible reg-exp portion: '(?i'. 错误一 Dj ...

  4. Python连载36-线程数量限制、Timer、可重入锁

    一.允许一个资源最多由几个线程同时进行 命令行:threading.Semaphore(个数) 代表现在最多有几个线程可以进行操作 import threading import time #参数定义 ...

  5. Shell基本运算符之文件测试符

    文件测试运算符 ================摘自菜鸟教程================= 文件测试运算符用于检测UNIx文件的各种属性: 操作符 说明 例子 -b 检测文件是否是块设备文件,如果 ...

  6. Spring Boot整合Mybatis配置详解

    首先,你得有个Spring Boot项目. 平时开发常用的repository包在mybatis里被替换成了mapper. 配置: 1.引入依赖: <dependency> <gro ...

  7. 【译】.NET Core 是 .NET 的未来

    为什么要翻译咧,.NET 5 都宣布在 .NET Core 之后发布咯,何不再给 .NET Core 打打鸡血,我这个 .NET Core 的死忠粉. 原文:<.NET Core is the ...

  8. 【UOJ#388】【UNR#3】配对树(线段树,dsu on tree)

    [UOJ#388][UNR#3]配对树(线段树,dsu on tree) 题面 UOJ 题解 考虑一个固定区间怎么计算答案,把这些点搞下来建树,然后\(dp\),不难发现一个点如果子树内能够匹配的话就 ...

  9. 【05】Nginx:TCP / 正向 / 反向代理 / 负载均衡

    写在前面的话 在我们日常的工作中,不可能所有的服务都是简单的 HTML 静态网页,nginx 作为轻量级的 WEB 服务器,其实我们将它用于更多的地方还是作为我们网站的入口.不管你是后端接口,还是前端 ...

  10. Activex在没有电子秤api的情况下获取串口数据

    大二做B/S架构的项目使用了安衡电子秤CHS-D+R和一款扫码枪,两个设备的串口使用一样,这款电子秤是相当的坑,没有开发的api,无奈只能自己开发Activex了,在B/S架构中进行引用Activex ...