暴力\(DP\)

考虑暴力\(DP\),我们设\(f_{i,j}\)表示当前覆盖长度为\(i\),上一次折叠长度为\(j\)的方案数。

转移时需要再枚举这次的折叠长度\(k\)(\(k\ge j\)),转移方程如下:

\[f_{i+2k-j,k}+=f_{i,j}
\]

对于左、右两边,根据不同的初始化\(DP\)两遍。

统计时枚举两边覆盖长度计算即可。

优化\(DP\)

实际上,我们可以把这个\(DP\)拆成两个数组,一个表示左端点在\(x\)位的方案数,另一个表示右端点在\(y\)位的方案数。

转移时,方程也是比较简洁的:

\[a_{x+i}+=a_x,b_{x+2i}+=a_x
\]

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 10000
#define X 998244353
#define Inc(x,y) ((x+=(y))>=X&&(x-=X))
using namespace std;
int n,l,r;
class Dper
{
private:
int f[N+5],g[N+5],p[N+5];
public:
I void Solve()
{
#define DP(s,x,y) for(p[0]=i=1,t=n-y;i<=n;++i) p[i]=0;\
for(i=x;2*i<=t;++i) for(j=0;2*i+j<=t;++j) Inc(p[i+j],p[j]),Inc(s[2*i+j],p[j]);++s[x];//用#define简洁表示两次DP
RI i,j,t,ans=0;DP(f,l,r);DP(g,r,l);//DP预处理
for(i=l;i<=n-r;++i) ans=(1LL*f[i]*g[n-i]+ans)%X,Inc(f[i+1],f[i]);printf("%d",ans);//统计答案
}
}D;
int main()
{
freopen("fold.in","r",stdin),freopen("fold.out","w",stdout);
return scanf("%d%d%d",&n,&l,&r),D.Solve(),0;
}

【2019.7.16 NOIP模拟赛 T2】折叠(fold)(动态规划)的更多相关文章

  1. 【2019.8.20 NOIP模拟赛 T2】小B的树(tree)(树形DP)

    树形\(DP\) 考虑设\(f_{i,j,k}\)表示在\(i\)的子树内,从\(i\)向下的最长链长度为\(j\),\(i\)子树内直径长度为\(k\)的概率. 然后我们就能发现这个东西直接转移是几 ...

  2. 【2019.7.20 NOIP模拟赛 T2】B(B)(数位DP)

    数位\(DP\) 首先考虑二进制数\(G(i)\)的一些性质: \(G(i)\)不可能有连续两位第\(x\)位和第\(x+1\)位都是\(1\).因为这样就可以进位到第\(x+2\)位.其余情况下,这 ...

  3. 【2019.7.16 NOIP模拟赛 T1】洗牌(shuffle)(找环)

    找环 考虑每次洗牌其实是一次置换的过程,而这样必然就会有循环出现. 因此我们直接通过枚举找出每一个循环,询问时只要找到环上对应的位置就可以了. 貌似比我比赛时被卡成\(30\)分的倍增简单多了? 代码 ...

  4. 【2019.7.15 NOIP模拟赛 T2】与非树(nand)(树形DP)

    树形\(DP\) 实际上,这道题应该不是很难. 我们设\(f_{x,i,j}\)表示在以\(x\)为根的子树内,原本应输出\(i\),结果输出了\(j\)的情况数. 转移时,为了方便,我们先考虑与,再 ...

  5. 10.16 NOIP模拟赛

    目录 2018.10.16 NOIP模拟赛 A 购物shop B 期望exp(DP 期望 按位计算) C 魔法迷宫maze(状压 暴力) 考试代码 C 2018.10.16 NOIP模拟赛 时间:2h ...

  6. 2018.10.16 NOIP模拟赛解题报告

    心路历程 预计得分:\(100 + 100 + 20 = 220\) 实际得分:\(100 + 100 + 30 = 230\) 辣鸡模拟赛.. T1T2都是一眼题,T3考验卡常数还只有一档暴力分. ...

  7. 2019.7.26 NOIP 模拟赛

    这次模拟赛真的,,卡常赛. The solution of T1: std是打表,,考场上sb想自己改进匈牙利然后wei了(好像匈牙利是错的. 大力剪枝搜索.代码不放了. 这是什么神仙D1T1,爆蛋T ...

  8. 20161005 NOIP 模拟赛 T2 解题报告

    beautiful 2.1 题目描述 一个长度为 n 的序列,对于每个位置 i 的数 ai 都有一个优美值,其定义是:找到序列中最 长的一段 [l, r],满足 l ≤ i ≤ r,且 [l, r] ...

  9. 20161003 NOIP 模拟赛 T2 解题报告

    Weed duyege的电脑上面已经长草了,经过辨认上面有金坷垃的痕迹. 为了查出真相,duyege 准备修好电脑之后再进行一次金坷垃的模拟实验. 电脑上面有若干层金坷垃,每次只能在上面撒上一层高度为 ...

随机推荐

  1. Oracle数据库的关键系统服务整理

    在Windows 操作系统下安装Oracle 9i时会安装很多服务——并且其中一些配置为在Windows 启动时启动.在Oracle 运行在Windows 下时,有些服务可能我们并不总是需要但又害怕停 ...

  2. python创建文件时去掉非法字符

    1.函数作用 windows系统中文件名不能包含 \ / : * ? " < > |想要创建必须过滤掉这些字符 2.函数实现 import re def filename_fil ...

  3. Linux和windows下修改tomcat内存

    原文地址:https://www.cnblogs.com/wdpnodecodes/p/8036333.html 由于服务器上放的tomcat太多,造成内存溢出. 常见的内存溢出有以下两种: java ...

  4. CodeForces 574D Bear and Blocks

    Limak is a little bear who loves to play. Today he is playing by destroying block towers. He built n ...

  5. XStream处理XML用法

    参考:https://www.yiibai.com/xstream/xstream_json.html 1.简介: XStream是一个简单的基于Java库,Java对象序列化到XML,反之亦然(即: ...

  6. laravel模型中非静态方法也能静态调用的原理

    刚开始用laravel模型时,为了方便一直写静态方法,进行数据库操作. <?php namespace App\Models; use Illuminate\Database\Eloquent\ ...

  7. Python platform 模块

    Python platform 模块 platform 模块用于查看当前操作系统的信息,来采集系统版本位数计算机类型名称内核等一系列信息. 使用方法: import platform # 获取操作系统 ...

  8. Ubuntu关机重启后 NVIDIA-SMI 命令不能使用

    问题: 电脑安装好Ubuntu系统后,后续安装了显卡驱动.CUDA.cuDNN等软件,后续一直没有关机.中间系统曾经有过升级,这也是问题所在.系统升级导致内核改变,并可能导致它与显卡驱动不再匹配,所以 ...

  9. 【机器学习笔记】Python机器学习基本语法

    本来算法没有那么复杂,但如果因为语法而攻不下就很耽误时间.于是就整理一下,搞python机器学习上都需要些什么基本语法,够用就行,可能会持续更新. Python四大类型 元组tuple,目前还没有感受 ...

  10. C#循环结构

    一.背景: 因编程的基础差,因此最近开始巩固学习C#基础,后期把自己学习的东西,总结相应文章中,有不足处请大家多多指教. 二.简介 有的时候,可能需要多次执行同一块代码.一般情况下,语句是顺序执行的: ...