poj 3744 题解
题意: $ yyf $ 一开始在 $ 1 $ 号节点他要通过一条有 $ n $ 个地雷的道路,每次前进他有 $ p $ 的概率前进一步,有 $ 1-p $ 的概率前进两步,问他不领盒饭的概率。
对于这道题我们可以考虑 $ dp $ ,我们可以设计状态 $ f[i] $ 表示安全通过 $ i $的概率,那么我们可以得到状态转移方程
$ f[i]=p* f[i-1]+(1-p)* f[i-2] $
$ f[x_i]=0 $
然后我们可以看到 $ x \in [1, 100000000] $如果我们直接 $ dp $ 很明显会超时那么怎么办呢?我们可以去考虑进行分段 $ dp $ 。我们可以观察发现在你到一个地雷前,这其中的概率只与这个地雷有关就可以把区间进行缩小然后 $ dp $
$ a[1],a[2],a[3]......a[x[1]] $
$ a[x[1]+1],a[x[1]+2],a[x[1]+3]......a[x[2]] $
$ .......... $
$ a[x[n-1]+1],a[x[n-1]+2],a[x[n-1]+3]......a[x[n]] $
然后我们看到这个状态转移方程
$ f[i]=p* f[i-1]+(1-p)* f[i-2] $
是不是很像
$ f[i]=f[i-1]+ f[i-2] $
就可以看作斐波那契数列加了个参数可以使用矩阵加速(对于这个网上有很多题解,这里就不讲这个讲下别的)
首先我们可以写出它的特征方程 $ x^2=px+* (1-p) $
移项后得 $ x^2-px+p-1=0 $
利用求根公式得到两个不同的可行解 $ x_1=p-1 \ \ \ \ x_2= 1 $
就可以写出通项公式 $ f(n)=c_1x_1n+c_2x_2n $
即 $ f(n)=c_1* 1^n +c_2 * (p-1)^n $
然后我们可以将 $ f(1)=1,f(2)=p $ 带入可以知道 $ c_1=\frac{1}{2-p} \ \ \ c_2=\frac{1}{p-2} $
最后的通项公式就是 $ f(n)=\frac{1-(p-1)^n}{2-p} $
最后用快速幂求出 $ 1-(p-1)^n $ 即可
代码
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int n,x[30];
double p,ans;
double power(int y){
double tmp=1;double x=p-1.0;//注意类型
while(y){
if(y&1) tmp*=x;
x*=x;
y>>=1;
}
return tmp;
}
int main(){
while(scanf("%d %lf",&n,&p)!=EOF){
for(int i=1;i<=n;++i) scanf("%d",&x[i]);
ans=1;x[0]=0;
sort(x+1,x+1+n);//原来的地雷不一定有序
for(int i=1;i<=n;++i){
int tmp=x[i]-x[i-1]-1;//走到地雷前
ans*=((1.0-power(tmp))/(2.0-p));
if(fabs(ans)<1e-8) break;//为0直接退出
ans*=(1.0-p);//跳过地雷,走两步
}
printf("%.7lf\n",ans);
}
return 0;
}
poj 3744 题解的更多相关文章
- poj 3744 Scout YYF I(递推求期望)
poj 3744 Scout YYF I(递推求期望) 题链 题意:给出n个坑,一个人可能以p的概率一步一步地走,或者以1-p的概率跳过前面一步,问这个人安全通过的概率 解法: 递推式: 对于每个坑, ...
- 矩阵快速幂+概率DP poj 3744
题意:在一条不满地雷的路上,你现在的起点在1处.在N个点处布有地雷,1<=N<=10.地雷点的坐标范围:[1,100000000]. 每次前进p的概率前进一步,1-p的概率前进1-p步.问 ...
- POJ 3744 Scout YYF I 概率dp+矩阵快速幂
题目链接: http://poj.org/problem?id=3744 Scout YYF I Time Limit: 1000MSMemory Limit: 65536K 问题描述 YYF is ...
- POJ 3744 Scout YYF I:概率dp
题目链接:http://poj.org/problem?id=3744 题意: 有n个地雷,位置为pos[i]. 在每个位置,你向前走一步的概率为p,向前走两步的概率为1-p. 你的初始位置为1. 问 ...
- poj 3744 Scout (Another) YYF I - 概率与期望 - 动态规划 - 矩阵快速幂
(Another) YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into th ...
- POJ 3744 Scout YYF I(矩阵快速幂优化+概率dp)
http://poj.org/problem?id=3744 题意: 现在有个屌丝要穿越一个雷区,雷分布在一条直线上,但是分布的范围很大,现在这个屌丝从1出发,p的概率往前走1步,1-p的概率往前走2 ...
- 【POJ 3744】 Scout YYF I
[题目链接] http://poj.org/problem?id=3744 [算法] 概率DP + 矩阵乘法 [代码] #include <algorithm> #include < ...
- POJ 3744 Scout YYF I
分段的概率DP+矩阵快速幂 Scout YYF I Time Limit: 1000MS Memory Limit: 65536K Total Sub ...
- Scout YYF I(POJ 3744)
Scout YYF I Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5565 Accepted: 1553 Descr ...
随机推荐
- Stability Analysis of Algorithms
算法(Algorithm)是指用来操作数据.解决程序问题的一组方法.对于同一个问题,使用不同的算法,也许最终得到的结果是一样的,比如排序就有前面的十大经典排序和几种奇葩排序,虽然结果相同,但在过程中消 ...
- UFUN函数 UF_CFI函数(uc4504,uc4540,uc4514,uc4547,UF_CFI_ask_file_exist )
UF_initialize(); //指定本地数据文件的路径 char file_spec[]="D://Program Files//Siemens//NX 8.0//UGII//zyTO ...
- 关于windbg报错"No symbols for ntdll. Cannot continue."问题
最近我写个例子程序研究下某个异常情况,故意制造了个崩溃.然后分析dmp文件. 当我执行!address -summary命令想观察下进程当前内存情况时,去报如下错误: 0:000> !addre ...
- IIS 站点配置文件
IIS 站点配置文件 C:/Windows/System32/inetsrv/config/applicationHost.config 配置文件示例: <system.application ...
- 2016级移动应用开发在线测试13-Location、Sensor & Network
有趣有内涵的文章第一时间送达! 喝酒I创作I分享 生活中总有些东西值得分享 @醉翁猫咪 1. 充分利用智能手机的GPS定位信息,创造了O2O的商业模式,打通了线上与线下的信息流和商流,极大地推动了移 ...
- GoCN每日新闻(2019-10-10)
GoCN每日新闻(2019-10-10) GoCN每日新闻(2019-10-10) 1. Go语言源码阅读之bytes.Buffer http://www.pengrl.com/p/60618/ 2. ...
- K8S API对象
POD Pod是在K8s集群中运行部署应用或服务的最小单元,它是可以支持多容器的.Pod的设计理念是支持多个容器在一个Pod中共享网络地址和文件系统,可以通过进程间通信和文件共享这种简单高效的方式组合 ...
- sparkUI
sparkUI 源码: https://www.cnblogs.com/barrenlake/p/4364644.html 页面介绍: https://blog.csdn.net/qq_2763977 ...
- [C++] const和mutable关键字使用方法
const 修饰的变量为常成员变量,表示此变量不能被修改赋值,并且构造函数中只能用初始化列表的方式初始化,其他初始化方式都是错误的 const 修饰的函数为常成员函数,表示此函数中只能读取成员变量,不 ...
- python复合数据类型以及英文词频统计
这个作业的要求来自于:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE1/homework/2753. 1.列表,元组,字典,集合分别如何增删改查及遍历. 列 ...