题目传送门:CF407E

题意简述:

给定非负整数 \(k,d\) 和一个长度为 \(n\)(\(1\le n\le 2\times 10^5\))的整数序列 \(a\)。

求这个序列中最长的一个连续子串 \(a[l:r]\) 满足:添加不超过 \(k\) 个整数,再排序后,可以形成公差为 \(d\) 的等差数列。

若有多个满足条件取最左侧的那个。

题解:

首先特判 \(d=0\) 的情况,这时相当于求最长连续段。

易发现若一些数要组成一个公差为 \(d\) 的等差数列,必须要满足这些数模 \(d\) 同余。

所以依次考虑每个模 \(d\) 同余的连续子串,将其中每个数除以 \(d\) 向下取整,转化为 \(d=1\) 的情况。

转化为一个经典问题,要求连续子串的值域满足某些条件,而条件仅和子串中的最值、子串端点的位置有关。

假设子串为 \(a[l:r]\),这里的条件是:\(\max\{a[l:r]\}-\min\{a[l:r]\}+l\le k+r\) 且 \(a[l:r]\) 中无重复元素。

考虑右端点 \(r\) 从 \(1\) 开始逐步向右推,每次求出最佳的合法左端点位置。

对于两个限制,前者使用两个单调栈和线段树解决,后者限定了一个 \(l\) 的下限,维护每个值的上一次出现位置,每次向右推时更新即可。

求位置时需要查询一段区间内的最靠左的值 \(\le k+r\) 的位置,这可以通过线段树维护最小值简单地做到。

下面是代码,时间复杂度 \(\mathcal{O}(n\log n)\):

#include <cstdio>
#include <algorithm> const int MN = 200005;
const int MS = 1 << 19 | 7; #define li (i << 1)
#define ri (i << 1 | 1)
#define mid ((l + r) >> 1)
#define ls li, l, mid
#define rs ri, mid + 1, r
int mn[MS], tg[MS];
inline void P(int i, int x) { mn[i] += x, tg[i] += x; }
inline void pd(int i) { if (tg[i]) P(li, tg[i]), P(ri, tg[i]), tg[i] = 0; }
void Build(int i, int l, int r) {
mn[i] = tg[i] = 0;
if (l == r) return ;
Build(ls), Build(rs);
}
void Mdf(int i, int l, int r, int a, int b, int x) {
if (r < a || b < l) return ;
if (a <= l && r <= b) return P(i, x);
pd(i), Mdf(ls, a, b, x), Mdf(rs, a, b, x);
mn[i] = std::min(mn[li], mn[ri]);
}
int Qur(int i, int l, int r, int a, int b, int x) {
if (r < a || b < l || mn[i] > x) return -1;
if (l == r) return l;
pd(i);
int lpos = Qur(ls, a, b, x);
return ~lpos ? lpos : Qur(rs, a, b, x);
} int Ans, MaxLen;
inline void Solve(int *A, int N, int K, int offset) {
if (N <= MaxLen) return ;
static int B[MN], C[MN], Lst[MN], stk1[MN], stk2[MN];
for (int i = 1; i <= N; ++i) B[i] = A[i];
std::sort(B + 1, B + N + 1);
int M = std::unique(B + 1, B + N + 1) - B - 1;
for (int i = 1; i <= N; ++i)
C[i] = std::lower_bound(B + 1, B + M + 1, A[i]) - B;
for (int i = 1; i <= M; ++i) Lst[i] = 0;
int MinL = 1, tp1 = 0, tp2 = 0;
Build(1, 1, N);
for (int i = 1; i <= N; ++i) {
MinL = std::max(MinL, Lst[C[i]] + 1);
Lst[C[i]] = i;
for (; tp1 && A[stk1[tp1]] <= A[i]; --tp1)
Mdf(1, 1, N, stk1[tp1 - 1] + 1, stk1[tp1], A[i] - A[stk1[tp1]]);
for (; tp2 && A[stk2[tp2]] >= A[i]; --tp2)
Mdf(1, 1, N, stk2[tp2 - 1] + 1, stk2[tp2], A[stk2[tp2]] - A[i]);
stk1[++tp1] = stk2[++tp2] = i;
Mdf(1, 1, N, i, i, i);
int lpos = Qur(1, 1, N, MinL, i, K + i);
if (~lpos && MaxLen < i - lpos + 1) {
MaxLen = i - lpos + 1;
Ans = lpos + offset;
}
}
} int N, K, D;
int A[MN], R[MN], B[MN], t; int main() {
scanf("%d%d%d", &N, &K, &D);
for (int i = 1; i <= N; ++i) scanf("%d", &A[i]);
if (D == 0) {
int mxl = 1, lst = A[1], len = 1, ans = 1;
for (int i = 2; i <= N; ++i) {
if (A[i] == lst) ++len;
else len = 1, lst = A[i];
if (len > mxl) mxl = len, ans = i - mxl + 1;
}
printf("%d %d\n", ans, ans + mxl - 1);
return 0;
}
for (int i = 1; i <= N; ++i) R[i] = (A[i] % D + D) % D;
for (int i = 1; i <= N; ++i) {
B[++t] = (A[i] - R[i]) / D;
if (i == N || R[i] != R[i + 1])
Solve(B, t, K, i - t), t = 0;
}
printf("%d %d\n", Ans, Ans + MaxLen - 1);
return 0;
}

CodeForces 407E: k-d-sequence的更多相关文章

  1. Codeforces 486E LIS of Sequence(线段树+LIS)

    题目链接:Codeforces 486E LIS of Sequence 题目大意:给定一个数组.如今要确定每一个位置上的数属于哪一种类型. 解题思路:先求出每一个位置选的情况下的最长LIS,由于開始 ...

  2. Codeforces GYM 100114 C. Sequence 打表

    C. Sequence Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100114 Description ...

  3. CodeForces 670E Correct Bracket Sequence Editor(list和迭代器函数模拟)

    E. Correct Bracket Sequence Editor time limit per test 2 seconds memory limit per test 256 megabytes ...

  4. Codeforces gym102152 K.Subarrays OR

    传送:http://codeforces.com/gym/102152/problem/K 题意:给定$n(n\le10^5)$个数$a_i(a_i\le10^9)$,对于任一个子数组中的数进行或操作 ...

  5. Codeforces 670E - Correct Bracket Sequence Editor - [线段树]

    题目链接:https://codeforces.com/contest/670/problem/E 题意: 给出一个已经匹配的括号串,给出起始的光标位置(光标总是指向某个括号). 有如下操作: 1.往 ...

  6. 【codeforces 623E】 Transforming Sequence

    http://codeforces.com/problemset/problem/623/E (题目链接) 题意 长度为${n}$的满足前缀按位或为单调递增的${k}$位序列.要求每个位置为${[1, ...

  7. codeforces 1133E K Balanced Teams

    题目链接:http://codeforces.com/contest/1133/problem/E 题目大意: 在n个人中找到k个队伍.每个队伍必须满足最大值减最小值不超过5.求满足条件k个队伍人数的 ...

  8. codeforces C. Cows and Sequence 解题报告

    题目链接:http://codeforces.com/problemset/problem/284/C 题目意思:给出3种操作:t = 1:在前 a 个数中每个数都加上x: t= 2:在数组末尾增加一 ...

  9. 【codeforces 602D】Lipshitz Sequence

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  10. Codeforces 1133E - K Balanced Teams - [DP]

    题目链接:https://codeforces.com/contest/1133/problem/C 题意: 给出 $n$ 个数,选取其中若干个数分别组成 $k$ 组,要求每组内最大值与最小值的差值不 ...

随机推荐

  1. [LeetCode] 632. Smallest Range Covering Elements from K Lists 覆盖K个列表元素的最小区间

    You have k lists of sorted integers in ascending order. Find the smallest range that includes at lea ...

  2. sonatype nexus安装教程

    1. 安装nexus前需要先安装maven.(详见jdk安装教程)2. 将nexus-2.0.2.rar放到d:\teamwork中,点击右键,解压到当前文件夹中.其中包含两个文件夹:nexus,so ...

  3. nginx 目录自动加斜线”/”

    默认配置当你访问http://abc.example.com/dir 时不会加”/” 常见做法 if (-d $request_filename){  rewrite ^/(.*)([^/])$ ht ...

  4. 【08月02日】A股滚动市盈率PE历史新低排名

    2010年01月01日 到 2019年08月02日 之间,滚动市盈率历史新低排名. 上市三年以上的公司,2019年08月02日市盈率在300以下的公司. 1 - XD栖霞建(SH600533) - 历 ...

  5. torch_06_卷积神经网络

    1.概述 卷积神经网络的参数,由一些可学习的滤波器集合构成的,每个滤波器在空间上都计较小,但是深度和输入数据的深度保持一致.在前向传播中,让每个滤波器都在输入数据的宽度和高度上滑动(卷积),然后计算整 ...

  6. 发送邮件报错javax.activation.UnsupportedDataTypeException: no object DCH for MIME type multipart/mixed

    关于使用javaMail发送邮件报错:javax.activation.UnsupportedDataTypeException: no object DCH for MIME type multip ...

  7. 一个简单 System.Threading.Tasks.Dataflow.TransformBlock 示例

    直接贴代码了: using System; using System.Collections.Generic; using System.IO; using System.Threading.Task ...

  8. 【转】.Net程序员学习Linux最简单的方法

    有很多关于Linux的书籍.博客.大多数都会比较“粗暴“的将一大堆的命令塞给读者,从而使很多.NET程序员望而却步.未入其门就路过了. 所以我设想用一种更为平滑的学习方式, 就是在学习命令时,先用纯语 ...

  9. Webpack 4 : ERROR in Entry module not found: Error: Can't resolve './src'

    ERROR in Entry module not found: Error: Can't resolve './src' in 'E:\ASUS\Documents\VSCode files\Web ...

  10. Redis(八) LRU Cache

    Redis(八)-- LRU Cache 在计算机中缓存可谓无所不在,无论还是应用还是操作系统中,为了性能都需要做缓存.然缓存必然与缓存算法息息相关,LRU就是其中之一.笔者在最先接触LRU是大学学习 ...