Pinball Game 3D

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 1137    Accepted Submission(s): 477

Problem Description
RD is a smart boy and excel in pinball game. However, playing common 2D pinball game for a great number of times results in accumulating tedium. 



Recently, RD has found a new type of pinball game, a 3D pinball game. The 3D pinball game space can be regarded as a three dimensional coordinate system containing N balls. A ball can be considered as a point. At the beginning, RD made a shot and hit a ball.
The ball hit by RD will move and may hit another ball and the “another ball” may move and hit another another ball, etc. But once a ball hit another ball, it will disappear.



RD is skilled in this kind of game, so he is able to control every ball's moving direction. But there is a limitation: if ball A's coordinate is (x1,y1,z1) and ball B's coordinate is (x2,y2,z2), then A can hit B only if x1 <= x2 and y1 <= y2 and z1 <= z2.



Now, you should help RD to calculate the maximum number of balls that can be hit and the number of different shooting schemes that can achieve that number. Two schemes are different if the sets of hit balls are not the same. The order doesn't matter.
 
Input
The first line contains one integer T indicating the number of cases.

In each case, the first line contains one integer N indicating the number of balls. 

The next N lines each contains three non-negative integer (x, y, z), indicating the coordinate of a ball. 

The data satisfies T <= 3, N <= 105, 0 <= x, y, z <= 230, no two balls have the same coordinate in one case.
 
Output
Print two integers for each case in a line, indicating the maximum number of balls that can be hit and the number of different shooting schemes. As the number of schemes can be quite large, you should output this number mod 230.
 
Sample Input
2
3
2 0 0
0 1 0
0 1 1
5
3 0 0
0 1 0
0 0 1
0 2 2
3 3 3
 
Sample Output
2 1
3 2
问题是求三维的LIS问题。LIS,即最长递增子序列。显然是用动态规划来求解的
一维的情况,可以直接两个for循环,进行DP。但是如果数据有1e5,暴力循环效率是O(n^2*(n+1)/2),
所以可以用一些数据结构优化一下,比如单调队列,树状数组等。
树状数组最擅长的是快速的求前缀和,同时也可以求前缀和最值。
下面三维的情况要复杂一点。首先,要找到比这个点小的点,然后在这些点中进行DP
这就属于三维偏序的问题,对于三维偏序,一般都是降维处理
可以一维排序,二维CDQ分治,三维树状数组,
这里,CDQ分治,要先处理左半边,然后处理左半边对右半边的影响,再处理右半边。
树状数组里面插入DP状态,
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h>
using namespace std; const int maxn=1e5;
const int INF=0x7FFFFFFF;
const int mod = 1 << 30 ; struct Node
{
int x,y,z;
int id,z2;
}a[maxn+5],b[maxn+5]; int n,e,d[maxn+5];
int cmp(Node a,Node b)
{
if(a.x==b.x&&a.y==b.y)
return a.z<b.z;
else if(a.x==b.x)
return a.y<b.y;
return a.x<b.x;
}
int cmp2(Node a,Node b)
{
return a.z<b.z;
}
struct node
{
int len;
int num;
}dp[maxn+5],c[maxn+5]; int lowbit(int x)
{
return x&(-x);
}
void update(node &term1,node term2)
{
if(term1.len<term2.len)
{
term1=term2;
}
else if(term1.len==term2.len)
term1.num+=term2.num;
} void insert(int x,node y)
{
for(int i=x;i<=e;i+=lowbit(i))
{
update(c[i],y);
}
}
node sum(int x)
{
node p;
for(int i=x;i>=1;i-=lowbit(i))
{
update(p,c[i]);
}
return p;
}
void del(int x)
{
for(int i=x;i<=e;i+=lowbit(i))
{
c[i].len=0;
c[i].num=0;
}
}
void fun(int l,int r)
{
if(l==r)
{ return;
}
int mid=(l+r)>>1;
fun(l,mid);
for(int i=l;i<=r;i++)
{
b[i]=a[i];
b[i].x=0;
}
sort(b+l,b+r+1,cmp);
for(int i=l;i<=r;i++)
{
if(b[i].id<=mid)
{
insert(b[i].z,dp[b[i].id]);
}
else
{
node temp=sum(b[i].z);
if(dp[b[i].id].len<temp.len+1)
{
dp[b[i].id].len=temp.len+1;
dp[b[i].id].num=temp.num;
}
else if(dp[b[i].id].len==temp.len+1)
dp[b[i].id].num+=temp.num;
}
}
for(int i=l;i<=r;i++)
{
if(b[i].id<=mid)
del(b[i].z);
}
fun(mid+1,r); }
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
e=0;
for(int i=1;i<=n;i++)
{
scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].z);
d[i]=a[i].z; } sort(a+1,a+n+1,cmp);
sort(d+1,d+1+n),e=unique(d+1,d+1+n)-d; for(int i=1;i<=n;i++)
{
a[i].id=i;
dp[i].len=1;
dp[i].num=1;
a[i].z=lower_bound(d+1,d+1+e,a[i].z)-d;
c[i].len=0;
c[i].num=0;
} fun(1,n);
node ans;
ans.len=0;
ans.num=0;
for(int i=1;i<=n;i++)
update(ans,dp[i]);
printf("%d %d\n",ans.len,ans.num%mod);
}
return 0;
}

 

HDU 4247 Pinball Game 3D(cdq 分治+树状数组+动态规划)的更多相关文章

  1. Hdu4742-Pinball Game 3D(cdq分治+树状数组)

    Problem Description RD is a smart boy and excel in pinball game. However, playing common 2D pinball ...

  2. hdu_4742_Pinball Game 3D(cdq分治+树状数组)

    题目链接:hdu_4742_Pinball Game 3D 题意: 给你n个点,让你求三维的LIS,并且求出有多少种组合能达到LIS. 题解: 求三维的LIS,典型的三维偏序问题,x排序,解决一维,c ...

  3. 【BZOJ4553】[Tjoi2016&Heoi2016]序列 cdq分治+树状数组

    [BZOJ4553][Tjoi2016&Heoi2016]序列 Description 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他.玩具上有一个数列,数列中某些项的值可能 ...

  4. BZOJ 1176 Mokia CDQ分治+树状数组

    1176: [Balkan2007]Mokia Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 1854  Solved: 821[Submit][St ...

  5. 【bzoj3262】陌上花开 CDQ分治+树状数组

    题目描述 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当且仅当Sa&g ...

  6. 【bzoj2225】[Spoj 2371]Another Longest Increasing CDQ分治+树状数组

    题目描述 给定N个数对(xi, yi),求最长上升子序列的长度.上升序列定义为{(xi, yi)}满足对i<j有xi<xj且yi<yj. 样例输入 8 1 3 3 2 1 1 4 5 ...

  7. BZOJ 2683 简单题 cdq分治+树状数组

    题意:链接 **方法:**cdq分治+树状数组 解析: 首先对于这道题,看了范围之后.二维的数据结构是显然不能过的.于是我们可能会考虑把一维排序之后还有一位上数据结构什么的,然而cdq分治却可以非常好 ...

  8. LOJ3146 APIO2019路灯(cdq分治+树状数组)

    每个时刻都形成若干段满足段内任意两点可达.将其视为若干正方形.则查询相当于求历史上某点被正方形包含的时刻数量.并且注意到每个时刻只有O(1)个正方形出现或消失,那么求出每个矩形的出现时间和消失时间,就 ...

  9. BZOJ 4553 [Tjoi2016&Heoi2016]序列 ——CDQ分治 树状数组

    考虑答案的构成,发现是一个有限制条件的偏序问题. 然后三个维度的DP,可以排序.CDQ.树状数组各解决一维. #include <map> #include <cmath> # ...

随机推荐

  1. 修改Java标准库源码

    以下是摘抄,实际操作没有测试   先前我曾提到,原本想借由“改动Java标准库源码”来测知Class object的生成,但由于其ctor原始设计为private,也就是说不可能透过这个管道生成Cla ...

  2. php获取QQ头像并显示的方法

    鉴于此,我在想一个大众化的,比较简单的方法,我想到的是对于没有头像的朋友调用其QQ头像, 因为QQ现在至少是人手一个,所以只需要留言时填写QQ号,然后调用其头像,这样一来就方便多了. 首先是获取QQ的 ...

  3. 使用Java程序片段动态生成表格

    <% String[] bookName = { "javaweb典型模块大全", "java从入门到放弃", "C语言程序设计" } ...

  4. SpringMVC-Controller

    接上: web.xml Spring-servlet.xml Controller层是控制层,在其类上添加@Controller注解,会被Spring-servlet.xml中的<context ...

  5. Linux配置防火墙,开启80port、3306port 可能会遇到的小问题

     vi /etc/sysconfig/iptables -A INPUT -m state –state NEW -m tcp -p tcp –dport 80 -j ACCEPT(同意80端口通 ...

  6. Oracle:create pfile from spfile:rac下要小心该操作啊!

    默认在原位置创建一个pfile的ora初始化参数文件!! 这在rac下会带来问题,因为rac下,当使用asm存储时,instance的启动参数文件就是pfile(其内容是指向一个spfile).如果不 ...

  7. Android获取屏幕高度、标题高度、状态栏高度详解

    Android获取屏幕高度的方法主要由view提供 通过View提供的方法获取高度方式有两种: 1, 当前显示的view中直接获取当前view高宽2,通过Activity的getWindow().fi ...

  8. [转] CSocket 和CAsyncSocket类介绍

    微软的MFC把复杂的WinSock API函数封装到类里,这使得编写网络应用程序更容易. CAsyncSocket类逐个封装了WinSock API,为高级网络程序员提供了更加有力而灵活的方法.这个类 ...

  9. iOS-WKWebView使用

    使用代码:可直接粘贴到自己项目中使用 .h #import "BaseViewController.h" @interface LinkNewsController : BaseV ...

  10. day23<File类递归练习>

    File类递归练习(统计该文件夹大小) File类递归练习(删除该文件夹) File类递归练习(拷贝) File类递归练习(按层级打印) 递归练习(斐波那契数列) 递归练习(1000的阶乘所有零和尾部 ...