Pinball Game 3D

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 1137    Accepted Submission(s): 477

Problem Description
RD is a smart boy and excel in pinball game. However, playing common 2D pinball game for a great number of times results in accumulating tedium. 



Recently, RD has found a new type of pinball game, a 3D pinball game. The 3D pinball game space can be regarded as a three dimensional coordinate system containing N balls. A ball can be considered as a point. At the beginning, RD made a shot and hit a ball.
The ball hit by RD will move and may hit another ball and the “another ball” may move and hit another another ball, etc. But once a ball hit another ball, it will disappear.



RD is skilled in this kind of game, so he is able to control every ball's moving direction. But there is a limitation: if ball A's coordinate is (x1,y1,z1) and ball B's coordinate is (x2,y2,z2), then A can hit B only if x1 <= x2 and y1 <= y2 and z1 <= z2.



Now, you should help RD to calculate the maximum number of balls that can be hit and the number of different shooting schemes that can achieve that number. Two schemes are different if the sets of hit balls are not the same. The order doesn't matter.
 
Input
The first line contains one integer T indicating the number of cases.

In each case, the first line contains one integer N indicating the number of balls. 

The next N lines each contains three non-negative integer (x, y, z), indicating the coordinate of a ball. 

The data satisfies T <= 3, N <= 105, 0 <= x, y, z <= 230, no two balls have the same coordinate in one case.
 
Output
Print two integers for each case in a line, indicating the maximum number of balls that can be hit and the number of different shooting schemes. As the number of schemes can be quite large, you should output this number mod 230.
 
Sample Input
2
3
2 0 0
0 1 0
0 1 1
5
3 0 0
0 1 0
0 0 1
0 2 2
3 3 3
 
Sample Output
2 1
3 2
问题是求三维的LIS问题。LIS,即最长递增子序列。显然是用动态规划来求解的
一维的情况,可以直接两个for循环,进行DP。但是如果数据有1e5,暴力循环效率是O(n^2*(n+1)/2),
所以可以用一些数据结构优化一下,比如单调队列,树状数组等。
树状数组最擅长的是快速的求前缀和,同时也可以求前缀和最值。
下面三维的情况要复杂一点。首先,要找到比这个点小的点,然后在这些点中进行DP
这就属于三维偏序的问题,对于三维偏序,一般都是降维处理
可以一维排序,二维CDQ分治,三维树状数组,
这里,CDQ分治,要先处理左半边,然后处理左半边对右半边的影响,再处理右半边。
树状数组里面插入DP状态,
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h>
using namespace std; const int maxn=1e5;
const int INF=0x7FFFFFFF;
const int mod = 1 << 30 ; struct Node
{
int x,y,z;
int id,z2;
}a[maxn+5],b[maxn+5]; int n,e,d[maxn+5];
int cmp(Node a,Node b)
{
if(a.x==b.x&&a.y==b.y)
return a.z<b.z;
else if(a.x==b.x)
return a.y<b.y;
return a.x<b.x;
}
int cmp2(Node a,Node b)
{
return a.z<b.z;
}
struct node
{
int len;
int num;
}dp[maxn+5],c[maxn+5]; int lowbit(int x)
{
return x&(-x);
}
void update(node &term1,node term2)
{
if(term1.len<term2.len)
{
term1=term2;
}
else if(term1.len==term2.len)
term1.num+=term2.num;
} void insert(int x,node y)
{
for(int i=x;i<=e;i+=lowbit(i))
{
update(c[i],y);
}
}
node sum(int x)
{
node p;
for(int i=x;i>=1;i-=lowbit(i))
{
update(p,c[i]);
}
return p;
}
void del(int x)
{
for(int i=x;i<=e;i+=lowbit(i))
{
c[i].len=0;
c[i].num=0;
}
}
void fun(int l,int r)
{
if(l==r)
{ return;
}
int mid=(l+r)>>1;
fun(l,mid);
for(int i=l;i<=r;i++)
{
b[i]=a[i];
b[i].x=0;
}
sort(b+l,b+r+1,cmp);
for(int i=l;i<=r;i++)
{
if(b[i].id<=mid)
{
insert(b[i].z,dp[b[i].id]);
}
else
{
node temp=sum(b[i].z);
if(dp[b[i].id].len<temp.len+1)
{
dp[b[i].id].len=temp.len+1;
dp[b[i].id].num=temp.num;
}
else if(dp[b[i].id].len==temp.len+1)
dp[b[i].id].num+=temp.num;
}
}
for(int i=l;i<=r;i++)
{
if(b[i].id<=mid)
del(b[i].z);
}
fun(mid+1,r); }
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
e=0;
for(int i=1;i<=n;i++)
{
scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].z);
d[i]=a[i].z; } sort(a+1,a+n+1,cmp);
sort(d+1,d+1+n),e=unique(d+1,d+1+n)-d; for(int i=1;i<=n;i++)
{
a[i].id=i;
dp[i].len=1;
dp[i].num=1;
a[i].z=lower_bound(d+1,d+1+e,a[i].z)-d;
c[i].len=0;
c[i].num=0;
} fun(1,n);
node ans;
ans.len=0;
ans.num=0;
for(int i=1;i<=n;i++)
update(ans,dp[i]);
printf("%d %d\n",ans.len,ans.num%mod);
}
return 0;
}

 

HDU 4247 Pinball Game 3D(cdq 分治+树状数组+动态规划)的更多相关文章

  1. Hdu4742-Pinball Game 3D(cdq分治+树状数组)

    Problem Description RD is a smart boy and excel in pinball game. However, playing common 2D pinball ...

  2. hdu_4742_Pinball Game 3D(cdq分治+树状数组)

    题目链接:hdu_4742_Pinball Game 3D 题意: 给你n个点,让你求三维的LIS,并且求出有多少种组合能达到LIS. 题解: 求三维的LIS,典型的三维偏序问题,x排序,解决一维,c ...

  3. 【BZOJ4553】[Tjoi2016&Heoi2016]序列 cdq分治+树状数组

    [BZOJ4553][Tjoi2016&Heoi2016]序列 Description 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他.玩具上有一个数列,数列中某些项的值可能 ...

  4. BZOJ 1176 Mokia CDQ分治+树状数组

    1176: [Balkan2007]Mokia Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 1854  Solved: 821[Submit][St ...

  5. 【bzoj3262】陌上花开 CDQ分治+树状数组

    题目描述 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当且仅当Sa&g ...

  6. 【bzoj2225】[Spoj 2371]Another Longest Increasing CDQ分治+树状数组

    题目描述 给定N个数对(xi, yi),求最长上升子序列的长度.上升序列定义为{(xi, yi)}满足对i<j有xi<xj且yi<yj. 样例输入 8 1 3 3 2 1 1 4 5 ...

  7. BZOJ 2683 简单题 cdq分治+树状数组

    题意:链接 **方法:**cdq分治+树状数组 解析: 首先对于这道题,看了范围之后.二维的数据结构是显然不能过的.于是我们可能会考虑把一维排序之后还有一位上数据结构什么的,然而cdq分治却可以非常好 ...

  8. LOJ3146 APIO2019路灯(cdq分治+树状数组)

    每个时刻都形成若干段满足段内任意两点可达.将其视为若干正方形.则查询相当于求历史上某点被正方形包含的时刻数量.并且注意到每个时刻只有O(1)个正方形出现或消失,那么求出每个矩形的出现时间和消失时间,就 ...

  9. BZOJ 4553 [Tjoi2016&Heoi2016]序列 ——CDQ分治 树状数组

    考虑答案的构成,发现是一个有限制条件的偏序问题. 然后三个维度的DP,可以排序.CDQ.树状数组各解决一维. #include <map> #include <cmath> # ...

随机推荐

  1. windows 开启端口

    场景: 解决方法: 选中入站规则,右键选择新建入站规则: 然后 选择“允许连接”,点“下一步”. 效果: 连接成功.

  2. Ubuntu 10.04 安装 Oracle11gR2

    注意点: 在 ubuntu的 /bin 下建立以下几个基本命令的链接: /bin/basename->/usr/bin/basename /bin/awk->/usr/bin/gawk / ...

  3. javascript在字符串中提取网址并替换成超链接

    var str = " http://wasmip.baidu.com.cn/mip/km/archives/km_archives_main/kmArchivesMain.do?metho ...

  4. 帝国留言板管理员回复发送EMAIL通知客户

    说明:修改1:e/admin/tool/ReGook.php   /*回复表单*/ 43行处添加代码 ------------------------------------------------- ...

  5. Git高级操作

    本文是在Git操作指南基础上衍生出来的高级操作,如果你对git不是很熟悉,建议你先阅读Git操作指南. 一.忽略提交特定文件 如果你不想让一些文件上传到git仓库中,可以让Git忽略特定文件或是目录, ...

  6. Java精选笔记_JSTL(JSP标准标签库)

    JSTL(JSP标准标签库) JSTL入门 JavaServer Pages Standard Tag Library:JSP标准标签库 在JSP中可以通过Java代码来获取信息,但是过多的Java代 ...

  7. ref 属性使用eslint报错

    react 使用 ref 报错 ,[eslint] Using string literals in ref attributes is deprecated. (react/no-string-re ...

  8. TestNG入门教程

    阅读目录 TestNG介绍 在Eclipse中在线安装TestNG 在Eclipse中离线安装Testng TestNG最简单的测试 TestNG的基本注解 TestNG中如何执行测试 使用testt ...

  9. help()

    help() 用于查看函数或模块的帮助信息 In [1]: help(id) # 查看id()这个函数的帮助信息,注意不要写成help(id()) id(...) id(object) -> i ...

  10. solr学习笔记-linux下配置solr(转)

    本文地址: http://zhoujianghai.iteye.com/blog/1540176 首先介绍一下solr: Apache Solr (读音: SOLer) 是一个开源.高性能.采用Jav ...