P4623 [COCI2012-2013#6] BUREK
题目描述
给定N个三角形,和M条直线,直线要么平行于X轴,要么平行于Y轴,问这M条直线 分别经过多少个三角形内部 (注意是内部即分开的两个多边形的面积均大于零)。
输入输出格式
输入格式:
第一行一个正整数 N (2≤N≤100000)表示三角形的个数。
接下来N行,每行三个坐标(x1,y1), (x2,y2), (x3,y3) 表示三点,且这三点不共线。所有
坐标均为非负整数且小于106三角形可以重叠。
接下来一个正整数M (2≤M≤100000),表示M个直线。
接下来M行,每行描述一条直线。"x = c"或"y = c"
(注意等号两边的空格)
c为非负整数,且小于106.
输出格式:
每一条直线输出一个整数,表示它穿过的三角形的个数。
输入输出样例
3
1 0 0 2 2 2
1 3 3 5 4 0
5 4 4 5 4 4
4
x = 4
x = 1
y = 3
y = 1
0
1
1
2
4
2 7 6 0 0 5
7 1 7 10 11 11
5 10 2 9 6 8
1 9 10 10 4 1
4
y = 6
x = 2
x = 4
x = 9
3
2
3
2
说明
- 对于40%的数据M≤300
- 另有40%的数据,所有三角形的坐标小于1000
Solution:
本题也是ZYYS,还以为是高深的计算几何,结果贼简单。
若一条直线经过三角形内部,则该直线一定经过三角形所在矩形,于是我们可以用给定的三点确定一个矩形。
因为给定直线一定平行于坐标轴,那么一条直线穿过矩形就两种情况,分别与横纵坐标相关,直接分情况讨论,在处理出矩形后对横纵坐标分别差分就好了,若矩形左下角为$(x_1,y_1)$右上角为$(x_2,y_2)$,因为截距为$\leq 10^6$的非负整数,所以可行的直线范围为$[x_1+1,x_2-1]$和$[y_1+1,y_2-1]$,那么差分时就让$sx[x_1+1]+1,sx[x_2]-1,sy[y_1+1]+1,sy[y_2]-1$。最后求一下前缀和,对于每次询问输出当前点的前缀和就好了。(很水,离散都不用,咕咕^_^)
代码:
/*Code by 520 -- 9.3*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int n,m,ppx,xx[N],yy[N],sx[N],sy[N];
char s[]; int gi(){
int a=;char x=getchar();
while(x<''||x>'')x=getchar();
while(x>=''&&x<='')a=(a<<)+(a<<)+(x^),x=getchar();
return a;
} int main(){
n=gi();
For(i,,n) {
RE int x1=gi(),y1=gi(),x2=gi(),y2=gi(),x3=gi(),y3=gi();
int lx=min(x1,min(x2,x3));
int ly=min(y1,min(y2,y3));
int rx=max(x1,max(x2,x3));
int ry=max(y1,max(y2,y3));
xx[lx+]++,xx[rx]--,yy[ly+]++,yy[ry]--;
}
For(i,,) sx[i]=sx[i-]+xx[i],sy[i]=sy[i-]+yy[i];
m=gi();
while(m--){
scanf("%s",s),ppx=gi();
printf("%d\n",s[]=='x'?sx[ppx]:sy[ppx]);
}
return ;
}
P4623 [COCI2012-2013#6] BUREK的更多相关文章
- 洛谷P4623 [COCI2012-2013#6] BUREK [模拟]
题目传送门 BUREK 格式难调,题面就不放了. 分析: 一道比较有思维难度的模拟题. 首先我们可以想到,对于一个三角形,可以画出一个最小矩形使得这个三角形被完全包围,并且这个矩形的边平行于坐标轴(图 ...
- 2013 Asia Changsha Regional Contest---Josephina and RPG(DP)
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4800 Problem Description A role-playing game (RPG and ...
- SharePoint 2013: A feature with ID has already been installed in this farm
使用Visual Studio 2013创建一个可视web 部件,当右击项目选择"部署"时报错: "Error occurred in deployment step ' ...
- Visual Studio 2013 添加一般应用程序(.ashx)文件到SharePoint项目
默认,在用vs2013开发SharePoint项目时,vs没有提供一般应用程序(.ashx)的项目模板,本文解决此问题. 以管理员身份启动vs2013,创建一个"SharePoint 201 ...
- SharePoint 2013 create workflow by SharePoint Designer 2013
这篇文章主要基于上一篇http://www.cnblogs.com/qindy/p/6242714.html的基础上,create a sample workflow by SharePoint De ...
- Install and Configure SharePoint 2013 Workflow
这篇文章主要briefly introduce the Install and configure SharePoint 2013 Workflow. Microsoft 推出了新的Workflow ...
- SharePoint 2013 configure and publish infopth
This article will simply descript how to configure and publish a InfoPath step by step. Note: To con ...
- TFS 2013 培训视频
最近给某企业培训了完整的 TFS 2013 系列课程,一共四天. 下面是该课程的内容安排: 项目管理 建立项目 成员的维护 Backlog 定义 任务拆分 迭代 ...
- Visual Studio 2013 Ultimate因为CodeLens功能导致Microsoft.Alm.Shared.Remoting.RemoteContainer.dll高CPU占用率的折中解决方案
1.为什么Microsoft.Alm.Shared.Remoting.RemoteContainer.dll的CPU占用率以及内存使用率会那么高? 在Visual Studio 2013 Ultima ...
随机推荐
- OpenStack入门篇(三)之KVM介绍及安装
1.什么是虚拟化? 虚拟化是云计算的基础.简单的说,虚拟化使得在一台物理的服务器上可以跑多台虚拟机,虚拟机共享物理机的 CPU.内存.IO 硬件资源,但逻辑上虚拟机之间是相互隔离的. 物理机我们一般称 ...
- 简单读取 properties文件
看了网上很多读取的方法,都太过复杂,直接使用下面的方法就可以简单读取 properties文件了 ide使用idea 测试读取成功 import java.util.ResourceBundle; p ...
- jquery.validate使用 - 5
一些常用的验证脚本 不会写js了,只能从网上找一些常用的验证脚本. // 手机号码验证jQuery.validator.addMethod("mobile", function(v ...
- _INTSIZEOF
在_INTSIZEOF中该有的都有了 1.这其中最小非负剩余和最大正余数例子如下: 设n为4,当r为1时,最小非负剩余就是1,最大非正剩余就是1 - 4 = -3,最大正余数为4 - 1 = 3 2. ...
- Visual Assist 试用期过期怎么办?
Visual Assist 试用期过期怎么办 VS这个强大的编译器常常会配置番茄小助手 Visual Assist,但是有时候试用期会过期,又想免费试用,怎么办呢? 有一个方法可以充值番茄助手的试用期 ...
- java 不同数据类型的相互转化
在工作中经常会遇到需要将数据类型转化的情况,今天抽出时间总结一下. date——string Date date = new Date(); DateFormat dateformat = new S ...
- php 中关于pdo的使用
之前一段时间,开始了php的研究,看了关于PDO的一些资料,发现不错,整理和总结一下,作为开发笔记,留待日后使用,<PHP开发笔记系列(一)-PDO使用>. PDO是PHP Data Ob ...
- CF刷刷水题找自信1
CF 1108A Two distinct points 题目意思:给你两个线段的起点和终点,让你给出两个不同的点,这两点分别处于两个不同的线段之中.解题思路:题目说如果存在多种可能的点,随意一组答案 ...
- 四则运算4 WEB(结对开发)
在第三次实验的基础上,teacher又对此提出了新的要求,实现网页版或安卓的四则运算. 结对开发的伙伴: 博客名:Mr.缪 姓名:缪金敏 链接:http://www.cnblogs.com/miaoj ...
- 对其中的一个特点将NABC的分析结果
一.题目要求 每一个组员针对其中的一个特点将NABC的分析结果发表博客上(截止日期4月8日晚24:00前). 二.分析结果 特点之一:通讯方便 <渴了么>这个安卓APP特点之一就是通讯方便 ...